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Abstract

Camera networks are being used in more applications
as different types of sensor networks are used to instrument
large spaces. Here we show a method for localizing the
cameras in a camera network to recover the orientation and
position up to scale of each camera, even when cameras are
wide-baseline or have different photometric properties. Us-
ing moving objects in the scene, we use an intra-camera
step and an inter-camera step in order to localize. The
intra-camera step compares frames from a single camera to
build the tracks of the objects in the image plane of the cam-
era. The inter-camera step uses these object image tracks
from each camera as features for correspondence between
cameras. We demonstrate this idea on both simulated and
real data.

1. Introduction

Camera networks are becoming a more common type of
high-bandwidth sensor network. These systems consists of
a number of cameras which communicate through a net-
work to perform some specified tasks. These tasks can be
as simple as just sending image data or can be more sophis-
ticated, such as automatic tracking of objects in the scene.
With the increase in computing power and advances in cam-
era technologies, camera networks are being used in more
and more applications like surveillance [17, 18], intelligent
environments [29, 30], and traffic monitoring [10, 5, 16].

An important step in any camera network deployment is
localization of the cameras themselves. The position and
orientation of the cameras must be determined in three-
dimensional (3D) space. By localizing the cameras in the
network, image data becomes more useful as we know
where the images are captured from and the relations of im-
ages of one camera to images of another. This aids in tasks
such as tracking and 3D position estimation of an object in
the scene.

Many current automatic low-bandwidth sensor network
are localized using acoustic information and radio fre-
quency intensities and exploiting received signal strength
indicators, time of arrival, time difference of arrival, or an-
gle of arrival [12]. However, these methods will not pro-
vide all the localization parameters necessary for cameras,
as there is no information on field of view orientation. Man-
ually measuring the pose (location and orientation) of all
cameras in the network is a very tedious and time consum-
ing task and sometimes requires special environmental con-
ditions that may not be present. For example, in [27], the
authors use a point light sources to calibrate cameras and the
EasyCal Calibration Toolbox [1] uses a point light source to
calibrate a network of cameras. This method requires con-
ditions in which the light source can actually be seen by the
cameras as well as requiring time consuming manual inter-
vention.

There has been some literature examining how to auto-
matically localize multiple cameras in a network. In [15],
the authors localize a network of cameras by assuming there
is a common set of features points seen by each set of three
cameras that can be used for calibration. However, this is
often not the case in many camera networks, as they can be
wide baseline and even if they see the same objects in the
scene the image features of that object look different in each
camera and do not lend well to correspondence. Points on
the head and feet of a silhouette of a human are used as fea-
ture points for correspondence in calibration on a frame by
frame basis in [25]. In order to do this a good representation
of a human silhouette is needed as well as where the points
on the head and feet are located on the silhouette.

In [8], the authors use a statistical method to find the lo-
calization parameters of the cameras. Objects are tracked
over time and the image position at each time is recorded
and used as a means to solve for the localization parame-
ters. However, it is assumed that the height, the Z coordi-
nate of the position vector, of the cameras as well as two of
their orientation parameters, are already known. Thus, only
the X-Y portion of the position vector and the orientation



around the principal axis of the camera are solved for.
In [23, 6], the authors assume a common global ground

plane. Within a single camera, tracked objects are fit to a
local ground plane and then using homography constraints,
these local ground planes are matched to a global ground
plane. In these works, how the camera is oriented to a local
ground plane is already known and then tracked objects in
time are used to provide the constraints for the homogra-
phies and determine which camera field of view relates to
which others. In [2, 13], this ground plane concept is ex-
tended a bit, where the relation of the local ground plane to
the camera is not known, but solved for based on tracked
objects and then these local ground planes are aligned to a
global ground plane based on homographies. While these
methods work well in certain settings, it is not always the
case that a global ground plane exists and trying to fit one
to the data from the cameras can lead in wrong localization
parameters.

In this paper, we present an automatic method for solv-
ing the localization task by using raw video from the cam-
eras in the network. By observing moving objects in the
scene, we are able to build trajectories of those objects in
the image plane, which we call object image tracks, in each
camera using a multi-target tracking algorithm. There is no
assumption of a global ground plane or any assumptions on
the external parameters of the cameras, unlike other work.
Also, our method works on wide baseline cameras where
common features points may not be able to be found. As
demonstrated in Figure 1, it is unclear how these two wide
baseline cameras are related until a moving object enters the
scene.

The object image tracks from each camera are then used
as spatio-temporal features to correlate against other ob-
ject image tracks from other cameras in order to determine
the orientation and position, up to a scale, of the cam-
eras relative to one another. A single camera’s coordinate
frame can be chosen as the world coordinate frame such
that each camera’s position and orientation can be related to
this world frame.

In Section 2, we discuss our problem formulation for
the network. Section 3 discusses our method using motion
of objects to build object image tracks using a multi-target
tracking algorithm. In Section 4, we examine how object
image tracks can be used as features and used for corre-
spondence between cameras for the epipolar constraint. In
Section 5, we present results, both simulated and real, on
different camera network setups. We conclude in Section 6
and discuss future extensions of this work.

2. Overview of the Method

For our method of localization, we assume the following
inputs and outputs:

(a) (b)

(c) (d)

Figure 1. Wide baseline matching: The top row shows images
from two wide baseline cameras without any moving object, and
it is difficult to tell how the cameras’ fields of view are related.
The bottom row shows images from the same two cameras with a
moving object in their fields of view and it is more clear how their
coordinate frames relate.

• Input: synchronized video sequences from the N
fixed cameras in the network which are at unknown
positions and orientations and known internal calibra-
tion parameters for all cameras

• Output: The orientation, R ∈ SO3×3 and the posi-
tion, up to scale factor, T ∈ R3 for all N cameras.

We make no prior assumptions on where the N cameras
are placed except that there must be some field of view over-
lap between pairs of cameras if the orientation, up to scale,
and position of those cameras are to be recovered. Further,
we do not make any assumptions on the scene structure. For
example, the cameras may be wide baseline and no prior
knowledge of how each camera’s coordinate frame is re-
lated to the ground of the scene is known. No prior corre-
spondences of features between cameras is known, nor do
we make any assumptions that the same static scene features
appear in multiple cameras. The problem is finding corre-
spondences between cameras as geometry and photometric
characteristics can vary considerably between images from
different cameras. Thus, one cannot necessarily use bright-
ness or proximity constraints and traditional methods of fea-
tures correspondence, such as SIFT features [14] or Salient
Region [28] will not necessarily work for localization.

By observing moving objects in the scene, we use this
information in order to localize the cameras. Our procedure
consists of three main steps in order to use individual raw
video streams to localize the cameras : an intra-camera step,
an inter-camera step, and then a global recovery step. The
intra-camera step, which we call track formation, involves
exploiting similarities of objects between frames for each



camera separately. The inter-camera step, which we call
track matching, involves using the object image tracks from
each camera as features to compare against object image
tracks from other cameras. The steps are as follows:

1. Track Formation: Find moving objects in each cam-
era’s field of view and based on correspondences be-
tween frames, build tracks of those objects within the
image plane as shown in Figure 2.

2. Track Matching: Using the image tracks from each
camera as features to compare against image tracks
from another cameras in order to determine the relative
orientation and position of each camera. This compar-
ison is done in a pair wise manner and is based off
of correspondences and the properties of the essential
matrix. This is illustrated in Figure 3.

3. Global Recovery: The transformation of all relative
coordinates of the cameras into a global coordinate
frame

(a) Camera 1 (b) Camera 2

Figure 2. Track formation: formation of tracks based on object
motion in two separate cameras.
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Figure 3. Track Matching: (a) shows the tracks in a single cam-
era (b) shows the tracks from another camera over the same time
period and (c) shows the correct track matchings between the two
cameras that is used in the epipolar constraint.

2.1. Track Formation

For this step, we assume there are P moving objects in
the scene and each camera, Ci where i ∈ 1, 2, ..., N , ob-
serves some subset of objects, pt

i ⊆ P at each time t. No
assumptions are made on what objects are seen by which
cameras nor what type of objects can be seen. For example,
humans, cars, and dogs could all be types of moving objects
seen by the cameras.

We assume the frame rate of the cameras are fast enough
to pick up the motion of objects moving in the scene. Within
a single camera, Ci, moving objects are found and tracks
of these objects within the image plane are built based on
multi-target tracking. This is discussed in more detail in
section 3.

2.2. Track Matching

Multiple view geometry is well studied. For two views
there exist geometric constraints that relate the correspond-
ing points in the 3D camera geometry, which come about in
the epipolar constraint. Since we know the internal parame-
ters of all cameras, here we focus on the essential matrix,
based off the epipolar constraint.

Once object image tracks in each camera have been re-
covered, we use these tracks as spatio-temporal features.
We compare these spatio-temporal features between each
pair of cameras to get a relative orientation and position, up
to scale, based on the essential matrix. We discuss this in
more detail in section 4

2.3. Global Recovery

Once all relative 3D orientations and positions are found
between each pair of cameras, a single camera can be cho-
sen as the world coordinate frame. Without loss of general-
ity we assume the world frame to be the camera coordinate
frame of C1. Then all Ci where i 6= 1, can be aligned to the
world frame.

3. Building Tracks
Building tracks of objects within the image plane of each

camera is the first thing that must be done using the raw
video data. Here we discuss the necessary steps in order to
build these tracks.

3.1. Filtering for Moving Objects

Filtering the video data in order to find the moving ob-
jects in each camera’s field of view is the necessary first
step. An adaptive background subtraction technique is ap-
plied in order to segment moving objects. We use the
method proposed by [32] in order to do this segmentation.
Items that are determined to be foreground are what we con-
sider for moving objects.

After the background segmentation is run, the remain-
ing foreground objects are further filtered. Bounding boxes
around each foreground object are determined. If a bound-
ing box is too close to the boundary of the image, based on
some threshold q, then this foreground object is not used in
that frame as a moving object. Thus, only the foreground
objects that lie completely within the image are treated as
the true moving objects. Thus, for each camera Ci we get
some number of moving objects pt

i at each time instance t.



For each moving object in the video frame of a cam-
era, we compute the centroid of that object and end up with
a list of centroids, M t

i , for each camera Ci. We use the
centroids of the objects as our measurements for the multi-
target tracking in order to build object image tracks using
data association.

3.2. Data Association and Multi-Target Tracking

Recently, multi-target tracking has received a consider-
able amount of attention in the computer vision commu-
nity because the task of tracking multiple objects in video
sequences is an important step towards understanding dy-
namic scenes. The essence of the multi-target tracking
problem is to find a track of each object from the noisy
measurements. If the sequence of measurements associated
with each object is known, multi-target tracking reduces to
a set of state estimation problems, for which many efficient
algorithms are available. Unfortunately, the association be-
tween measurements and objects is unknown. The data as-
sociation problem is to work out which measurements were
generated by which objects; more precisely, we require a
partition of measurements such that each element of a par-
tition is a collection of measurements generated by a single
object or clutter [26]. Due to this data association problem,
the complexity of the posterior distribution of the states of
objects grows exponentially as time progresses. It is well-
known that the data association problem is NP-hard [3, 22],
so we do not expect to find efficient, exact algorithms for
solving this problem. The problem gets more challenging
with video sequences due to the nonlinear camera projec-
tion, occlusions, and varying appearances, to name a few.

Since cameras are not calibrated, we cannot use the 3D
model-based tracking approaches such as [9, 7]. However,
we can still track moving objects on a 2D image plane.
In addition, the computational complexity of the model-
based approach, e.g., [7], is not desirable for our rapid au-
tonomous calibration task.

In order to handle highly nonlinear and non-Gaussian
dynamics and observations, a number of methods based on
particle filters has been recently developed to track multi-
ple objects in video [9, 21, 11]. Although particle filters
are highly effective in single-target tracking, it is reported
that they provide poor performance in multi-target tracking
[11]. It is because a fixed number of particles is insuffi-
cient to represent the posterior distribution with the expo-
nentially increasing complexity (due to the data association
problem). As shown in [11, 31], an efficient alternative is to
use Markov chain Monte Carlo (MCMC) to handle the data
association problem in multi-target tracking.

For our problem, there is an additional complexity. We
do not assume the number of objects is known. A single-
scan approach, which updates the posterior based only on
the current scan of measurements, can be used to track

an unknown number of targets with the help of trans-
dimensional MCMC [31, 11] or a detection algorithm [21].
But a single-scan approach cannot maintain tracks over long
periods because it cannot revisit previous, possibly incor-
rect, association decisions in the light of new evidence.
This issue can be addressed by using a multi-scan approach,
which updates the posterior based on both current and past
scans of measurements. The well-known multiple hypothe-
sis tracking (MHT) [4, 24] is a multi-scan tracker, however,
it is not widely used due to its high computational complex-
ity.

A newly developed algorithm, called Markov chain
Monte Carlo data association (MCMCDA), provides a com-
putationally desirable alternative to MHT [19]. The simu-
lation study in [19] showed that MCMCDA was compu-
tationally efficient compared to MHT with heuristics (i.e.,
pruning, gating, clustering, N-scan-back logic and k-best
hypotheses). In this paper, we use the online version of
MCMCDA to track multiple objects in a 2-D image plane.
Due to the page limitation, we omit the description of the
algorithm in this paper and refer interested readers to [20]
or [19].

4. Track Matching
In this section we describe how the position and orienta-

tion of a pair of cameras can be found relative to one another
using the object image tracks. Once we have determined the
object image tracks, we use these as spatio-temporal fea-
tures and look at the correspondence between these features
in each pair of cameras.

Once the object image tracks have been formed we use
the them as features to do feature correspondence between
cameras. While it is possible just to use the centroids of ob-
jects from all the frames alone as features and do point cor-
respondences, using the track information from the multi-
target tracking algorithm is much more beneficial. By doing
data association on the centroids, a track is formed which
best fits the centroid data and smooths over the noisy cen-
troid measurements. The new estimated tracks are then used
for correspondence instead of the original noisy centroids.
By using tracks, we can cut down the correspondence space
as multiple points in one track can only correspond to mul-
tiple points in another single track, not separate points from
multiple tracks. We can further constrain the correspon-
dence based on timing data on the tracks. Using the object
image tracks from the intra-camera data association greatly
reduces computation time and further constrains the posi-
tion and orientation of the cameras, leading us to a more
accurate solution.

We define the problem as follows. For a given time pe-
riod [t0, t0 + 1, . . . , tn], let



(Ci, Cj) Pair of cameras where i 6= j
Θi Set of tracks detected by Ci during [t0, tn]

ts(θi) Starting time of track θi ∈ Θi

te(θi) Ending time of track θi ∈ Θi

td(θi) Duration of track θi ∈ Θi

(i.e., td(θi) = [ts(θi), ts(θi) + 1, . . . , te(θi)])

where t0 ≤ ts(θi) < te(θi) ≤ tn, ∀θi ∈ Θi. For a
pair of cameras (Ci, Cj), we form a bipartite graph Gij =
(Θi, Θj , Eij) where Θi and Θj are vertex sets and the edge
set E includes all the pairs of tracks with overlapping times.
More formally,

Eij = {(θi, θj) : θi ∈ Θi, θj ∈ Θj , td(θi) ∩ td(θj) 6= ∅}
Now, let Γ0

ij be a set of all matchings in Gij . A matching in
Gij is a subset M ⊂ Eij such that no two edges in M share
a vertex.

It must be checked to see if there are enough tracks in a
matching for computing the essential matrix. For the most
general case, where all object image tracks are linear, we
require at least 4 matching tracks between cameras and 3
or more overlapping times in each track pair. This provides
enough constraints for the essential matrix to be solved for,
excluding a few singular cases. Let Γij = {γ ∈ Γ0

ij : |γ| ≥
k1, |td(θi) ∩ td(θj)| ≥ k2 for all (θi, θj) ∈ γ}, where |A|
denotes the cardinality of set A. Γij is a set of matchings in
Gij of size larger than or equal to k1, consisting of pairs of
tracks with larger than k2 overlapping times (for instance,
k1 = 4 and k2 = 3 for the linear case). We call γ ∈ Γij a
candidate track correspondence. An example of a candidate
track correspondence can be seen in Figure 4(c).

(a) (b) (c)

Figure 4. (a) An example of a bipartite graph Gij for (Ci, Cj)
(k1 = 4, pi = |Θi|). (b) An example of a matching in Gij which
does not qualify as a candidate matching as only 3 tracks match
up; and (c) An example of a candidate track correspondence in
Gij . In this example, we have assumed that each pair of tracks has
more than k2 overlapping times.

Given a candidate track correspondence γ ∈ Γij , let Φγ

be a set of all 3-matchings in γ. For each φ ∈ Φγ , we solve
for the essential matrix Eφ. Then, we search for a matching
γ∗ ∈ Γij which minimizes the following cost function:

d(γ) =

∑
φ1,φ2∈Φγ ,φ1 6=φ2

‖Eφ1 − Eφ2‖F

|{φ1, φ2 ∈ Φγ : φ1 6= φ2}| , (1)

where ‖ · ‖F denotes the Frobenius norm. The cost function
d(γ) can be considered as an average deviation of all the es-
sential matrices formed by the matching γ. If γ is a correct
matching, we can expect that all the essential matrices gen-
erated from γ are close to each other. Hence, d(γ) should
be small as well. Again, γ∗ = arg min d(γ). If d(γ∗) is
less than some threshold, Eφ∗ for some φ∗ ∈ Φγ∗ is chosen
to be the essential matrix between Ci and Cj . Otherwise,
we say the camera pair does not share a field of view.

A natural question to ask is whether tracks based on the
centroid of an object will actually correspond to the same
points in space when dealing with the epipolar constraint. If
the segmentation is perfect and the objects are spheres, then
the centroids of the segmented objects do in fact correspond
to the same points in space. Yet most objects do not have
this nice property nor can be segmented out perfectly in the
image such as people,cars, dogs, and other types of moving
objects often in scenes. However, as an upper bound on the
error, we know that the true centroid of the object will be
inside the convex hull of the silhouette segmented out. Our
results show that the estimated results are within 8 degrees,
in both position and orientation, of the ground truth results.

5. Results

The method discussed in this paper was tested in a sim-
ulated camera network setup and a real camera network
setup.

5.1. Simulation

To test our method, we simulated objects moving
through a scene observed by a camera network. The sim-
ulation was done in matlab using 7 different camera views
and different size cubes as the moving objects. Perspective
projection and triangular fields of view were used for the
simulated cameras. All measurements had gaussian noise
of N(0, 1) added to them. The camera setup can be seen in
Figure 5(a) and 5(b).

(a) (b)

Figure 5. Camera network simulation setup

Using the ground truth to compare measurement for the
corners of the cubes, the error in the estimated measure-
ments was on average off by 3%, based on image size.



Figure 6. Overhead view of the position of the 3 real cameras

5.2. Images from Camera Network

We also tested our algorithm on a system of cameras.
Here we show the results on data from a camera network
of three cameras. Images from the network can be seen in
Figure 7.

In this setup three cameras were placed in a wide base-
line configuration on a second story balcony of a building
looking down at the first floor. Figure 6 illustrates the lay-
out of the cameras from an overhead view. Tracks of people
walking on the first floor were used to localize the cameras.
Three different sequences of 60 seconds of video footage
were used. As we had control over the environment, ground
truth for the position and orientation of the cameras was ob-
tained using a point light source and methods in the [1].

The resulting error in the estimated position, up to scale,
can be seen in Table 1 and the estimated orientation error
can be seen in Table 2. The center camera’s coordinate
frame was chosen as the world coordinate frame and the
right and left cameras aligned to the center camera’s coor-
dinate frame in the global recovery step. We compared the
ground truth unit direction vectors for orientation and po-
sition of the left and right cameras in the world coordinate
frame to the estimated direction vectors from our method.
It can be seen seen that the error in the estimation of the
localization parameters is small using the centroids of the
objects in the scene to build the image tracks and then using
the estimated track points to do the correspondence.

camera sequence 1 sequence 2 sequence 3
Right 5.04 6.22 5.81
Left 4.11 7.68 5.91

Center 0 0 0
Table 1. Position Error: The error in the estimated position, up
to scale, from the tracks is given in degrees here. The coordinate
frame of the center camera is chosen as the world coordinate frame
and all other coordinate frames are aligned to this.

6. Conclusion
In this paper we have demonstrated a novel technique us-

ing spatio-temporal features to provide an efficient method

camera sequence 1 sequence 2 sequence 3
Right 1.42 3.67 2.84
Left 2.13 2.56 3.21

Center 0 0 0
Table 2. Orientation Error: The error in the estimated orientation
from the tracks is given in degrees here. The coordinate frame of
the center camera is chosen as the world coordinate frame and all
other coordinate frames are aligned to this.

to automatically localize the cameras in a network. Intra-
camera information about moving objects is exploited to
find the tracks of these objects within a camera’s field of
view. These object image tracks are then used as features
to do inter-camera correspondence and determine if the two
cameras share a field of view and how they are related based
on the essential matrix. We have demonstrated how this
technique work on both simulated and real data. Future
work on localizing using this technique involves running ex-
periments on a real camera network setup with more cam-
eras involved and adding in object descriptors to provide
additional information for the intra-camera step. We also
plan to demonstrate this method on heterogeneous camera
pairs, such as a catadioptric and perspective camera pair.
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Figure 7. Real Camera Network: Top Row: Images from the cameras with no moving objects Middle and Bottom Rows: Images from
cameras with tracks of moving objects shown over time.


