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Abstract—The data association problem appears in many
applications and is considered as the most challenging problem
in intelligent systems. In this paper, we consider the Bayesian
formulation of data association problems and present a determin-
istic polynomial-time approximation algorithm with guaranteed
error bounds using correlation decay from statistical physics.
We then show that the proposed algorithm naturally partitions
a complex problem into a set of local problems and develop a
distributed version of the algorithm. The performance of the
proposed algorithm is evaluated in simulation.

I. INTRODUCTION

Data association plays an important role in many applica-
tions, such as computer vision1, robotics, sensor networks,
information retrieval, and computer network security. In par-
ticular, data association is a fundamental problem in wireless
sensor networks, as multiple sensors make measurements
about simultaneous occurrences of multiple events and un-
certainty as to the correct association between events and
measurements is unavoidable. The data association problem
appears in applications such as multi-target tracking, identity
management, and localization of multiple events [1]–[4].

In this paper, we consider the Bayesian formulation of
general data association problems based on joint probabilistic
data association (JPDA) [1].2 JPDA has proved very effective
in cluttered environments compared to nearest neighbor filters
[1]. JPDA is also frequently applied to computer vision [12]
and robotics [13] and has been substantially extended [14]–
[16]. JPDA assumes a fixed (or bounded) number of targets
(or events) and computes Bayes estimates of the states. At
each time step, instead of finding a single best association
between measurements and tracks, JPDA enumerates all possi-
ble associations and computes association probabilities {�jk},
where �jk is the probability that the j-th measurement extends
the k-th track. Given an association, the state of a target is
estimated by a filtering algorithm and this conditional state
estimate is weighted by the association probability. Then the
state of a target is estimated by summing over the weighted
conditional estimates. The exact calculation of association
probabilities {�jk} in JPDA, which requires the summation
over all association event probabilities, is #P-complete [17],

1 It is also known as correspondence in computer vision.
2 Other notable data association algorithms include multiple hypothesis

tracker (MHT) [5]–[7], probabilistic multi-hypothesis tracking [8], mixture
reduction [9], multidimensional assignment [10], and probability hypothesis
density [11].

[18].3 Some heuristic approaches have been developed to avoid
the enumeration of all possible associations, including “cheap”
JPDA [20], “suboptimal” JPDA [21], “near-optimal” JPDA
[15], and a leave-one-out heuristic [22]. Later, researchers
found that Markov chain Monte Carlo is highly effective for
computing approximations [12], [23]–[25]. Belief propagation
and particle filters are also used for data association problems
[3]. The Fourier transform based approximation for data
association has recently been studied in [26]. But there has
been no analytical work for these approximation algorithms,
i.e., no approximation error bounds; the performance of an
algorithm is often justified only in simulation. Although a
fully polynomial randomized approximation scheme (FPRAS)
for data association is presented in [27], there has been no
deterministic approximation algorithm. The goal of this paper
is to extend this line of work and present a deterministic
approximation algorithm for data association with guaranteed
error bounds.

Recently, there has been an exciting new development in
computational complexity theory. There has been no known
deterministic polynomial time approximation algorithm for
#P-complete problems until very recently. But, now, there is
a growing class of #P-complete problems for which there is
a deterministic fully polynomial time approximation scheme
(FPTAS). Examples include problems such as counting the
number of independent sets and colorings of a graph [28],
[29], counting the number of proper colorings of a graph [30],
computing permanent of a 0-1 matrix [31], and counting the
number of matchings [32]. Bayati et al. [32] derived a deter-
ministic FPTAS for computing the number of matchings in a
bounded degree graph using the correlation decay technique
originating in statistical physics [33]. They have shown that
there is a deterministic FPTAS algorithm for computing the
partition function with time complexity O((n/�)�), where n
is the number of vertices, � > 0 is the desired approximation
ratio, and � is a constant for a bounded degree graph.

In this paper, we present a deterministic polynomial-time
approximation algorithm for data association using correlation
decay. A data association problem can be thought of as a
generalized version of the matching counting problem with
variable edge weights. We extend work by Bayati et al.
[32] to data association problems by showing that there is a
deterministic FPTAS algorithm for data association problems.

3 A #P-complete problem is computationally equivalent to computing the
number of accepting computations of a polynomial-time nondeterministic
Turing machine and #P contains NP [19].



To the best of our knowledge, the proposed algorithm is the
first deterministic polynomial-time approximation algorithm
for Bayesian data association problems. We notice that the
proposed algorithm naturally decomposes a complex problem
into a set of local problems, thanks to correlation decay. Based
on this observation, we develop a distributed version of the
algorithm without compromising performance. The distributed
algorithm is suitable for sensor networks for its scalability. We
have found that the analysis of correlation decay can reveal
the effective neighborhood size for a complex problem and we
think it will be an important tool for developing near-optimal
distributed algorithms for a wide range of complex problems.

The remainder of this paper is structured as follows. We
briefly describe data association and correlation decay in
Section II and Section III, respectively. The deterministic
approximation algorithm for data association is presented
in Section IV with analysis of the algorithm. A distributed
version of the deterministic approximation data association
algorithm is developed for sensor networks in Section V.
Simulation results are included in Section VI.

II. DATA ASSOCIATION

In this section, we present a Bayesian formulation for
general data association problems based on joint probabilistic
data association (JPDA) [1].

Suppose there are N measurements and K events. Some
measurements are from the K events while other measure-
ments are false measurements (false alarms). It is also possible
that there is no measurement for some events (missing detec-
tion). Let Y be the set of N measurements, Y = {y1, . . . , yN}.
We assume the availability of likelihood density functions
L(yj ∣k) for all feasible measurement-event pairs. L(yj ∣k)
describes the density of having measurement yj when yj is
a measurement of event k. A measurement of an event is
detected with probability pd and, with probability 1−pd, there
is no measurement about the event. There are also false alarms
and the number of false alarms has a Poisson distribution with
parameter �fV , where �f is the false alarm rate per unit volume
and V is the volume of the region being monitored.

In general, we do not know precisely which measurement is
generated by which event and the goal of data association is to
figure out the association between measurements and events.4
Once this data association problem is solved, the result can
be used for joint state estimation of multiple events [1], [2],
[12], [23].

Let Ω be the set of all feasible (joint) association events.
For each ! ∈ Ω, ! = {(j, k)}, where (j, k) denotes the event
that measurement j is associated with event k. An association
event ! is feasible when (i) yj is within the detection range of
event k, for each (j, k) ∈ !; (ii) a measurement is associated
with at most one event; and (iii) an event is associated with
at most one measurement. The second and third requirements
are the mutual exclusiveness property of data association [1],
[5], [26].

We encode a data association problem in a bipartite graph
G = (VL, VR, E), where VL = {yj : 1 ≤ j ≤ N} is a

4 The association of measurement-event pairs is analogous to track-identity
pairs in identity management, where N = K [2], [26].

vertex set of measurements, VR = {k : 1 ≤ k ≤ K} is
a vertex set of events, and (u, v) ∈ E if measurement u is
within the detection range of event v. We call this graph a
data association graph and an example is given in Figure 1.
A feasible association event is a matching in G, i.e., a subset
M ⊆ E such that no two edges in M share a vertex. The
set of all feasible association events Ω can be represented as
Ω =ℳ0(G)∪ℳ1(G)∪ ⋅ ⋅ ⋅ ∪ℳK(G), where Mk(G) is the
set of all k-matchings5 in G. Some examples of matchings or
feasible association events are shown in Figure 1(c) and 1(d).

Under the Bayesian framework, in order to estimate the
states of events x1, . . . , xK , where xk is the state of event
k, we need to compute the posteriors P (xk∣Y ). Although
P (xk∣Y ) cannot be computed directly since measurements
are correlated, we can apply the total probability theorem and
compute

P (xk∣Y ) =
∑
!∈Ω

P (xk∣!, Y )P (!∣Y )

=
N∑
j=0

�jkP (xk∣!jk, Y ), (1)

where !jk denotes the event {! ∈ Ω : (j, k) ∈ !}, !0k

denotes the event that no observation is associated with event
k, and �jk is an association probability, such that

�jk = P (!jk∣Y ) =
∑

!:(j,k)∈!

P (!∣Y ). (2)

Hence, for the objective of state estimation, the data associa-
tion problem reduces to the computation of N×K association
probabilities. But the exact computation of association proba-
bilities is NP-hard [17] and we present the first deterministic
approximation algorithm for computing association probabili-
ties in Section IV.

III. CORRELATION DECAY

Bayati et al. [32] presented a deterministic fully polyno-
mial time approximation scheme (FPTAS) for computing the
total number of matchings in a bounded degree graph using
correlation decay.

Given a graph G = (V,E), where V and E denote the
vertex set and the edge set of the graph, respectively, let
ℳ =ℳ(G) be the set of all matchings of G. The probability
distribution defined on ℳ can be represented as

PG(M) =
�∣M ∣

Z(G)
, (3)

where � is a fixed parameter called the activity, Z(G) is the
normalizing constant called the partition function, and ∣M ∣
denotes the number of edges in M . The partition function
Z(G) can be computed as

Z(G) =
∑
M∈ℳ

�∣M ∣. (4)

Definition 1: An approximation algorithm A is defined to
be a fully polynomial time approximation scheme (FPTAS)

5 A k-matching is a matching of cardinality k.



(a) (b) (c) (d)

Fig. 1. Graph theoretic interpretation of data association: an example. (a) In this 2D example, there are three events, ŷ1, ŷ2, and ŷ3 (shown as a solid
triangle). Measurements {yj : j = 1, 2, . . . , 8} are shown as black dots. A measurement is within the detection range of an event if it is inside the shaded
region centered at ŷk . (b) Data association graph G = (VL, VR, E), which encodes the data association problem as a bipartite graph. An edge between
yj ∈ VL and k ∈ VR indicates that measurement yj is within the detection range of k and (yj , k) ∈ E. (c,d) Examples of matchings in G. A matching in
G is an association event in the original data association problem. For example, the matching in (d) encodes an association event, in which no observation is
associated with event 1, y5 is associated with event 2, and y6 is associated with event 3.

for computing Z(G) if, given arbitrary � > 0, it produces a
value Ẑ satisfying

exp(−�) ≤ Ẑ

Z(G)
≤ exp(�),

in time which is polynomial in n, the number of vertices in
G, and 1/�.

The computation of Z(G) is #P-complete and Bayati et
al. showed that Z(G) can be approximated deterministically
in polynomial time by showing that Z(G) can be computed
using PG(v ∕∈ M), the probability that a random matching
chosen according to PG(M) does not contain vertex v (see
Lemma 1), and this probability can be approximated from
recursive computation of

ΦĜ(v, t+ 1) =
1

1 + �
∑
u∈N(v,Ĝ) ΦĜ∖{v}(u, t)

(5)

for every subgraph Ĝ of G and for every vertex v ∈ V (Ĝ),
where N(v, Ĝ) is the set of neighbors of v in Ĝ and Ĝ ∖ {v}
is a subgraph of Ĝ induced by vertices V ∖ {v}. The concept
of correlation decay was the main ingredient in their proof.

The main result of [32] is that the algorithm based on
recursive computation of (5) is an FPTAS for estimating Z(G)
with complexity O

(
(n� )� log Δ+1

)
, where Δ is the maximum

degree and � = −2/ log
(

1− 2√
1+�Δ+1

)
.

IV. A DETERMINISTIC APPROXIMATION ALGORITHM FOR
DATA ASSOCIATION

In this section, we present an algorithm for deterministically
approximating association probabilities in polynomial time
using correlation decay. As shown in Section II, a feasible
association event is a matching in a data association graph
(see Figure 1). However, while every edge has the same
contribution of � in the computation of the partition function,
the contribution of each edge is different when computing
association probabilities due to the likelihood terms L(yj ∣k).
Hence, it is unclear that the method proposed in [32] can be
directly applied to estimate association probabilities. We show
that it is possible and present a deterministic approximation
algorithm for computing association probabilities using corre-
lation decay.

Consider the data association graph G = (VL, VR, E) for
a data association problem described in Section II. Ω is a set
of all feasible association events in G and Ω =ℳ(G), i.e., a
set of all matchings in G. In order to compute the association
probability in (2), we need to compute P (!∣Y ). Based on the
model given in Section II, it can be shown that [27]

P (!) ∝ (�fV )N−∣!∣p
∣!∣
d (1− pd)K−∣!∣ (6)

and

P (!∣Y ) =
1

Z1
P (!)P (Y ∣!) (7)

=
1

Z2
�
N−∣!∣
f p

∣!∣
d (1− pd)K−∣!∣

∏
(u,v)∈!

Luv,

where Z1 and Z2 are normalizing constants and Luv is the
likelihood density L(yj ∣k) when v = yj and u = k.6 We also
let Lvu := Luv for convenience. We assume that the likelihood
density function is bounded and there exist Lmax < ∞ and
Lmin > 0, such that Lmin ≤ L(y∣k) ≤ Lmax, for any y and k.
This is a reasonable assumption with many density functions
and a measurement validation method such as gating [1] (for
example, see [34]). Since N and K are fixed, we can simplify
(7) further and obtain

P (!∣Y ) =
1

Z(G)

(
�−1

f pd(1− pd)−1
)∣!∣ ∏

(u,v)∈!

Luv. (8)

Let � = �−1
f pd(1 − pd)−1. Then the normalizing constant

Z(G) can be computed as

Z(G) =
∑
!∈Ω

�∣!∣
∏

(u,v)∈!

Luv. (9)

Comparing to (4), Z(G) has a similar form except the product
of likelihood terms for the edges in !.

Association probabilities �jk that we seek in this paper can
be computed from Z(G) as shown in the following theorem.

Theorem 1: For an edge (u, v) ∈ E of the data association
graph G = (VL, VR, E), we have

�uv =
Z(G ∖ {u, v})

Z(G)
�Luv. (10)

6 Recall pd and �f from Section II.



Proof:

�uv =
∑

!∈Ω:(u,v)∈!

P (!∣Y )

=
1

Z(G)

∑
!∈Ω:(u,v)∈!

�∣!∣
∏

(p,q)∈!

Lpq

=
1

Z(G)

⎛⎝ ∑
!′∈Ω(G∖{u,v})

�∣!
′∣

∏
(u′,v′)∈!′

Lu′v′

⎞⎠�Luv

=
Z(G ∖ {u, v})

Z(G)
�Luv,

where the third equality is due to the fact that, for a matching
!′ of G ∖ {u, v}, ! = !′ ∪ {(u, v)} is a matching in G, and
vice versa.

Let PG(v ∕∈ !) be the probability that a randomly chosen
association event ! does not contain a vertex v ∈ V :=
VL ∪ VR. Let Gk = G ∖ {v1, . . . , vk−1} for k = 1, 2, . . .
and G1 = G. Then, Z(G) can be computed using a recursive
set of PGk(vk ∕∈ !) using the following well-known identity
[19], [32].

Lemma 1: The following identity holds

Z(G) =
1∏

1≤k≤∣V ∣ PGk(vk ∕∈ !)
. (11)

Hence, we can focus on approximating PGk(vk ∕∈ !) for
the computation of Z(G). The following lemma shows how
PGk(vk ∕∈ !) can be computed.

Lemma 2: For every vertex u ∈ V , we have

PG(u ∕∈ !) =
1

1 + �
∑
v∈N(u) PG∖{u}(v ∕∈ !)Luv

and
PG(u ∕∈ !) ≥ 1

1 + �ΔLmax
,

where Δ is the maximum degree of the graph.
Proof: Since PG(u ∕∈ !) has the same probability of

randomly choosing ! ∈ℳ(G ∖ {u}) from Ω =ℳ(G),

PG(u ∕∈ !) =
Z(G ∖ {u})
Z(G)

. (12)

For a vertex u ∈ V , we can decompose Z(G) into two parts,
where one part is a set of matchings in which a vertex u is not
contained and the other part is a set of matchings containing
the vertex u. Hence,

Z(G) =
∑
!:u∕∈!

�∣!∣
∏

(u′,v′)∈!

Lu′v′

+
∑

v∈N(u)

∑
!:(u,v)∈!

�∣!∣
∏

(u′,v′)∈!

Lu′v′

= Z(G ∖ {u}) +
∑

v∈N(u)

Z(G ∖ {u, v})�Luv,

since a matching containing the vertex u is a matching con-
taining an edge (u, v) for some v ∈ N(u) and ! ∪{(u, v)} is
a matching in G containing the edge (u, v) for every matching
! in G∖{u, v}. Now we can divide both sides by Z(G∖{u})
and take the inverse to obtain the result using (12).

The second result of the lemma is a simple consequence of
the first, noting that ∣N(u)∣ ≤ Δ for all u ∈ V .

We now define ΦĜ(u, t) for every subgraph Ĝ of G and
for every vertex u ∈ V (Ĝ) and for t ≥ 0 to approximate
PĜ(u ∕∈ !). With ΦĜ(u, 0) = 1 for all Ĝ and u, for t ≥ 1,
we define

ΦĜ(u, t+ 1) =
1

1 + �
∑
v∈N(u) ΦĜ∖{u}(v, t)Luv

. (13)

The idea is not to enumerate all exponentially many sub-
graphs of G but to compute only a small number of Φ to
estimate PĜ(u ∕∈ !) using the parameter t to control the
number of recursion levels. The algorithm for computing Φ
is shown in Algorithm 1. If ΦG(u, t) is a good approximation
to PĜ(u ∕∈ !), we can apply Theorem 1 and Lemma 1 to
devise an algorithm for computing association probabilities of
a data association problem. The deterministic approximation
algorithm for data association is shown in Algorithm 2,
where �̂uv and Ẑ(G) are approximations to �uv and Z(G),
respectively.

Algorithm 1 Correlation Decay
Input: G, u, t
Output: ΦG(u, t)

1: if t = 0 or ∣G∣ = 0 then
2: Return ΦG(u, t) = 1
3: end if
4: for all v ∈ N(u) do
5: if t = 1 or ∣G ∖ {u}∣ = 0 then
6: Φs(v) = Luv
7: else
8: Compute ΦG∖{u}(v, t− 1) (Algorithm 1)
9: Φs(v) = LuvΦG∖{u}(v, t− 1)

10: end if
11: end for
12: ΦG(u, t) =

(
1 + �

∑
v∈N(u) Φs(v)

)−1

Algorithm 2 Deterministic Approximation Data Association
Input: t
Output: {�̂uv}

1: for k = 1 to ∣V ∣ do
2: Compute ΦGk(vk, t) (Algorithm 1)
3: end for
4: Ẑ(G) =

(∏
1≤k≤∣V ∣ ΦGk(vk, t)

)−1

5: for all (u, v) ∈ E do
6: G′ = G ∖ {u, v}
7: for k = 1 to ∣V (G′)∣ do
8: Compute ΦG′

k
(v′k, t) (Algorithm 1)

9: end for
10: Ẑ(G ∖ {u, v}) =

(∏
1≤k≤∣V (G′)∣ΦG′

k
(v′k, t)

)−1

11: �̂uv = Ẑ(G∖{u,v})
Ẑ(G)

�Luv
12: end for

We now show that Algorithm 2 is an FPTAS for computing
association probabilities. First, we bound the gap between



PG(v ∕∈ !) and ΦG(v, t) using correlation decay in the
following theorem. The proof is given in Appendix IX-A.

Theorem 2: For every vertex v ∈ V and every even t > 0,
the following bound holds.∣∣∣ logPG(v ∕∈ !)− log ΦG(v, t)

∣∣∣
≤
(

1− 1

1+
Lmax
Lmin

√
1+�ΔLmax

)t/2
log(1 + �ΔLmax).

We now present the approximation error bounds on associ-
ation probabilities. The proof is given in Appendix IX-B.

Theorem 3: Let � = − log

(
1− 1

1+
Lmax
Lmin

√
�

)
, where � =

1 + �ΔLmax. If t = 2⌈ log
2(N+K) log �

�

� ⌉ for � > 0, then

exp(−�) ≤ �̂uv
�uv
≤ exp(�),

for any (u, v) ∈ E.
Theorem 3 gives us the desired error bound for being an

FPTAS. Since the computational complexity of Algorithm 1
is O(Δt) and t = O(log(N + K)) from Theorem 3, we can
compute �̂uv in polynomial time in (N + K) and 1/� when
Δ = O(1) or the degree of the graph is bounded. This fact is
summarized in the next theorem.

Theorem 4: Algorithm 2 is an FPTAS when the degree of
the data association graph is bounded.

V. A DISTRIBUTED DATA ASSOCIATION ALGORITHM FOR
SENSOR NETWORKS

Consider a sensor network deployed over a bounded region.
Let Ns be the number of sensors. For each sensor si, let Ri
be its sensing region. Let Gs = (V,E) be a sensing graph,
where V = {si : 1 ≤ i ≤ Ns} is a set of sensor nodes and
E = {(si, sj) : Ri ∩ Rj ∕= ∅} is a set of sensor pairs with
overlapping sensing regions. For a pair of nodes si and sj , if
(si, sj) ∈ E, we assume that si and sj can communicate with
each other through direct or multi-hop communication.

The deterministic approximation data association algorithm
presented in Section IV naturally decomposes a complex prob-
lem into a set of local problems. For the desired approximation
ratio, we can choose an appropriate value for the parameter t
in Algorithm 1. When estimating Φ, we only consider vertices
that are at most t hops away on the data association graph.
Hence, for a node to perform Algorithm 1, it only needs
measurements from at most t

2 -hop neighboring sensors in the
sensing graph Gs, for even t. This idea is used to develop the
distributed algorithm described below.

For node si, let Y i = {yi1, . . . , yiji} be the measurements
collected by si and Ki = {ki1, . . . , kimi} be the events that
can be associated with a measurement in Y i. If sid(y) = si,
then y is a measurement from sensor node si. The distributed
deterministic approximation algorithm for data association is
given in Algorithm 3. We assume t is an even number. Each
node first broadcasts its measurements and event information
(Y i,Ki) to its t

2 -hop neighbors of the sensing graph Gs and
receives incoming measurements and event information from
its t

2 -hop neighbors. With information from t
2 -hop neighbors,

Algorithm 1 can be performed within each node. In order to

compute Ẑ, it is required to compute factors Φ on a sequence
of subgraphs, G1, G2, . . . , G∣V ∣. For this, Algorithm 4 is used
by passing the computation of the factor Φ on a subgraph
to the corresponding sensor node. Although we have stated
the computation of ΦG∖U (v, t) in Algorithm 4, we do not
need to know the overall structure of G since ΦG∖U (v, t)
can be computed with a subgraph of radius t

2 centered at si.
One interesting consequence of this algorithm is that when
the association graph is disconnected, each partition will be
computed separately, making the algorithm more efficient and
scalable.

Algorithm 3 Distributed Deterministic Approximation Algo-
rithm for Data Association
Input: t
Output: {�̂uv : u ∈ Y i, v ∈ Ki, (u, v) ∈ E}

1: i = my node id
2: Send measurements to t

2 -hop neighbors in Gs
3: Receive measurements from t

2 -hop neighbors in Gs

4: Ẑ(G) = Φtop(si, ∅, t)−1 (Algorithm 4)
5: for all {(u, v) ∈ E : u ∈ Y i, v ∈ Ki} do
6: Ẑ(G ∖ {u, v}) = Φtop(si, {u, v}, t)−1 (Algorithm 4)
7: �̂uv = Ẑ(G∖{u,v})

Ẑ(G)
�Luv

8: end for

Algorithm 4 Factor Computation
Input: sj , U , t
Output: Φtop(sj , U, t)

1: i = my node id
2: A = (Y i ∪Ki) ∖ U
3: if A = ∅ then
4: Φtop(sj , U, t) = 1
5: else
6: Choose v ∈ A
7: Compute ΦG∖U (v, t) (Algorithm 1)
8: if v is a measurement then
9: Send a request to sid(v) to compute Φtop(si, U ∪

{v}, t)
10: else
11: Compute Φtop(si, U ∪ {v}, t)
12: end if
13: Φtop(sj , U, t) = ΦG∖U (v, t) ⋅ Φtop(si, U ∪ {v}, t)
14: end if
15: Return Φtop(sj , U, t) to sj

VI. SIMULATION RESULTS

We first study the performance of Algorithm 2. In order to
compare its estimates against the exact values of �jk, a small
2D localization problem is chosen. There are 6 events and
24 measurements (see Figure 2(a)). The predicted values of
measurements of the events are

{(0, 0), (0, 1), (0,−1), (1, 0), (−1, 0), (1, 1)}.

The likelihood density function L(yj ∣k) = N (yj ∣ŷk,Σ) is
used for all measurement-event pairs, where N (⋅∣ŷk,Σ) is the



Gaussian density function with mean ŷk and covariance Σ. A
measurement y is validated for event k, i.e., the measurement-
event pair (y, k) is feasible, if (y − ŷk)TΣ−1(y − ŷk)T < 4.
For this simulation, we used pd = 0.8, �f = 0.5, and

Σ =

[
0.5 0
0 0.5

]
.

For this example, there are 8,517,625 association events.
The exact values of �jk are computed by enumerating all
association events and it took over 40,000 seconds, i.e.,
over 11 hours. It was the largest example for which we
could compute the exact association probabilities. A L∞ error
between �jk and �̂jk is used to measure the approximation
error. Figure 2(b) shows the approximation error as a function
of the parameter t. After t = 9, the approximation error is
less than 0.005 and its running time is about 26% of the exact
algorithm. If the desired error bound is at most 0.05, then
t = 6 is good enough and the corresponding running time is
0.7% of the exact algorithm. This was a simple example and
we expect the performance gap in terms of the running time
will become widened for a larger size problem.

Next, we consider a sensor network of 100 nodes ran-
domly placed over [0, 1] × [0, 1]. There are ten events and
40 measurements. A total of ten cases are randomly generated
to measure the average performance. An example is shown
in Figure 3(a). For simplicity, we assumed that the sensing
region of a sensor is a disk with radius 0.08. Note that the
algorithm works for any shape of sensing regions as long as
we know pairs of nodes with overlapping sensing regions. The
likelihood density function used in this case is the same as the

previous case except Σ =

[
0.01 0

0 0.01

]
. We used pd = 0.8,

�f = 0.1, and measurement y is validated for event k if and
only if (y− ŷk)TΣ−1(y− ŷk)T < 4. The approximation error
using L∞ error is shown in Figure 3(b). For these examples,
approximations at different neighborhood sizes are compared
against the values estimated by Algorithm 2 using all sensors.

For each random case we considered, the sensing graph is
connected and the maximum diameter of the graph is about
16 hops. Figure 3(b) shows how correlation decays as the
number of hops is increased. It shows that the approximation
error is close to zero after 6 hops, showing that we can make
a good approximation using only local information from 6-
hop neighbors. We think that the analysis of correlation decay
for a complex problem can reveal how an efficient distributed
approximation algorithm can be constructed for the problem.

VII. CONCLUSIONS

In this paper, we have presented the first deterministic
approximation algorithm for a Bayesian data association prob-
lem. The problem is known to be #P-complete and there
has been no known deterministic approximation algorithm
with guaranteed error bounds. Applying the correlation decay
technique, we have shown that the proposed algorithm is an
FPTAS when the maximum degree of the association graph is
bounded. This new formulation leads to natural partitioning
of a complex problem into a set of local problems and a
distributed algorithm is developed based on this property. We
strongly believe that many interesting but difficult problems in

wireless sensor networks can be reformulated using correlation
decay to derive efficient distributed approximation algorithms.

VIII. ACKNOWLEDGMENTS

This work has been supported in part by the Basic Science
Research Program through the National Research Foundation
of Korea (NRF) funded by the Ministry of Education, Science
and Technology (No. 2010-0027155).

IX. APPENDIX

A. Proof of Theorem 2

Our proof is based on the proof of Theorem 3.2 of [32] but
it treats a more general case, where each edge is allowed to
have a different weight �Luv .

For a vertex v ∈ V (G), denote by N(v,G) = {u1, . . . , um}
the neighborhood of v and N(ui, G ∖ {v}) = {wi1, . . . , wimi}
the neighborhood of ui. We introduce the following variables
to make our presentation compact. Let x = logPG(v ∕∈ !) and
y = log ΦG(v, t). For i = 1, . . . ,m, let xi = logPG∖{v}(ui ∕∈
!) and yi = log ΦG∖{v}(ui, t − 1). Finally, for i = 1, . . . ,m

and j = 1, . . . ,mi, let xji = logPG∖{v,ui}(w
i
j ∕∈ !) and yji =

log ΦG∖{v,ui}(w
i
j , t − 2). Here, x’s are the true probabilities

and y’s are the corresponding approximations.
Let z = (z1

1 , . . . , z
1
m1
, . . . , zm1 , . . . , z

m
mm)T and define x and

y similarly. Define a functional f to capture two steps of
recursions of Algorithm 1:

f(z) = log

⎛⎝1 + �
m∑
i=1

Lvui

1 + �
∑mi
j=1 e

zijLuiwij

⎞⎠ .

Then we have x = −f(x) and y = −f(y). Let g(�) =
f(�x+(1−�)y) for � ∈ [0, 1]. Using the mean value theorem,
there exists � such that, for z� = �x + (1− �)y,

∣x− y∣ = ∣∇f(z�) ⋅ (x− y)∣
≤ ∥∇f(z�)∥L1

⋅ ∥x− y∥L∞ , (14)

where the inequality is due to Hölder’s inequality. With Ai =

1 + �
∑mi
j=1 e

zijLij and Lij = Luiwij , we can write the L1-
norm as

∥∇f(z�)∥L1 =
�
∑m
i=1 Lvui

(
1
Ai

)2

�
∑mi
j=1 e

zijLij

1 + �
∑m
i=1

Lvui
Ai

=
�
∑m
i=1

Lvui
A2
i

(Ai − 1)

1 + �
∑m
i=1

Lvui
Ai

= 1−
1 + �

∑m
i=1

Lvui
A2
i

1 + �
∑m
i=1

Lvui
Ai

.

With some algebra, one can easily verify that C :=
1+�

∑m
i=1

Lvui
A2
i

1+�
∑m
i=1

Lvui
Ai

is minimized for 0 ≤ 1/Ai ≤ ∞ when

1/Ai =

√
1+�

∑mi
j=1 Lij−1

�
∑mi
j=1 Lij

.



(a) (b)

Fig. 2. A simple example of a data association problem with 6 events and 24 measurements. (a) The predicted values of measurements of events are shown
as crosses and measurements are shown as dots. (b) The L∞ approximation error as a function of the parameter t.

(a) (b)

Fig. 3. (a) An example of 100 sensor node deployment. Green dotted circles represent sensing regions of sensors, blue crosses are the predicted values of
measurements of events, and black dots are measurements. (b) Approximation errors at different neighborhood sizes (in terms of the number of hops in the
sensing graph). The solid line shows the average approximation error over 10 random cases and the error bar indicates one standard deviation.

What follows below is different from the proof of [32]. Let
Bi =

∑mi
j=1 Lij . Then ΔLmin ≤ Bi ≤ ΔLmax. We also have

the following inequalities for 1/Ai.
√

1 + �ΔLmin − 1

�ΔLmax
≤ 1

Ai
=

√
1 + �Bi − 1

�Bi
≤
√

1 + �ΔLmax

�ΔLmin
.

Now we can apply these bounds to C.

C ≥
1 + �ΔLmin

(√
1+�ΔLmin−1

�ΔLmax

)2

1 + �ΔLmax

(√
1+�ΔLmax
�ΔLmin

)
≥

�ΔLmin

(
(�ΔLmax)

2
+ �ΔLmin

(√
1 + �ΔLmin − 1

)2)
(�ΔLmax)

2 (
�ΔLmin + �ΔLmax

√
1 + �ΔLmax

)
≥ LminL

2
max

L2
max

(
Lmin + Lmax

√
1 + �ΔLmax

)
=

1

1 + Lmax
Lmin

√
1 + �ΔLmax

=: D

We note that D ∈ (0, 1). Using this result, we can bound the

L1-norm as below

∥∇f(z�)∥L1
≤ 1−D,

which is always less than one. We now apply this to (14) and
get

∣x− y∣ =

∣∣∣∣log
PG(v ∕∈ !)

ΦG(v, t)

∣∣∣∣
≤ (1−D) max

i,j

∣∣∣∣∣log
PG∖{v,ui}(w

i
j ∕∈ !)

ΦG∖{v,ui}(w
i
j , t− 2)

∣∣∣∣∣ .
After iterating t/2 times, we obtain the following bound∣∣∣log PG(v ∕∈!)

ΦG(v,t)

∣∣∣
≤ (1−D)t/2 maxĜ,u

∣∣∣ logPĜ(u ∕∈ !)− log ΦĜ(u, 0)
∣∣∣,

where the maximum is over all subgraph-vertex pairs, i.e.,
Ĝ ⊂ G and u ∈ V (Ĝ). Since log ΦĜ(u, 0) = 0, using the
second result of Lemma 2, we find that

max
Ĝ,u

∣∣∣ logPĜ(u ∕∈ !)− log ΦĜ(u, 0)
∣∣∣ ≤ log(1 + �ΔLmax)

and this completes the proof.



B. Proof of Theorem 3

Using Theorem 2, we get∣∣∣log ΦG(v,t)
PG(v ∕∈!)

∣∣∣
≤ log �

(
1− 1

1+
Lmax
Lmin

√
�

) log
2(N+K) log �

�
�

= log � exp
(

log �
2(N+K) log �

)
= �

2(N+K) .

Now using the fact that there are N+K vertices in the data
association graph and Lemma 1, we have

exp
(
− �

2

)
≤ Ẑ(G)

Z(G)
≤ exp

( �
2

)
and, for any (u, v) ∈ E,

exp
(
− �

2

)
≤ Ẑ(G ∖ {u, v})
Z(G ∖ {u, v})

≤ exp
( �

2

)
.

Using Theorem 1,

�̂uv
�uv

=

Ẑ(G∖{u,v})
Ẑ(G)

�Luv

Z(G∖{u,v})
Z(G) �Luv

=
Ẑ(G ∖ {u, v})
Z(G ∖ {u, v})

Z(G)

Ẑ(G)
.

Hence, we can conclude that

exp(−�) ≤ �̂uv
�uv
≤ exp(�),

for any (u, v) ∈ E.
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