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APPENDIX

A. Infinite Exploration

Theorem 1. For any arm a, the expected count has the fol-
lowing lower bound, E [Na(t)] ≥ ct where c = 1

K exp(− 1
α ).

Before starting the proof of Theorem 1, we first prove the
following Lemma.

Lemma 1.1. The policy of SERN has a constant lower
bound greater than zero, i.e., [πt]a ≥ c > 0, where c =
1
K exp(− 1

α ).

Proof of Lemma 1.1. For each round, the proposed method
samples an action from

πt := arg max
π

{
E
a∼π

[r̂a(st; θt−1)] + αS(π)

}
.

Thus, the policy distribution is the optimal solution of

max
π

{
E
a∼π

[r̂a(st; θt−1)] + αS(π)

}
which is a concave maximization problem since
Ea∼π [r̂a(st; θt−1)] is linear for π and αS(π) is concave
for π. The domain of this problem has two constraints, i.e.,∑
a πa − 1 = 0 and πa ≥ 0. Since the problem is concave,

strong duality holds and let us denote a dual variable for∑
a πa − 1 = 0 as µ and dual variable for positivity πa ≥ 0

as λa. Then, from Karush-Kuhn-Tucker (KKT) conditions,
we have

r̂a(st; θt−1)− α ln(πa)− α+ λa + µ = 0.

We first compute µ by multiplying πa to both sides
and summing up with respect to a. Then, µ = α −
αS(π) − Ea∼π [r̂a(st; θt−1)] where λaπa = 0, one of
KKT conditions, is used. By using S(π) ≤ − ln(1/K) and
Ea∼π [r̂a(st; θt−1)] ≤ 1, µ ≥ α+α ln(1/K)−1. Since ln(x)
requires x > 0 and for all a, πa > 0 holds, λa = 0 for all a
from KKT conditions. Thus,

ln(πa) =
r̂a(st; θt−1)− α+ µ

α
≥ ln(1/K)− 1

α

where r̂a ≥ 0. Finally, we get

πa ≥
1

K
exp

(
− 1

α

)
.
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The proof of Theorem 1 is as follows.

Proof of Theorem 1. Using Lemma 1.1, for all t and a,
[πt]a ≥ c where c = 1

K exp(− 1
α ). Thus, E [Na(t)] =∑

t[πt]a ≥ ct.

Theorem 2. For any arm a, let N ′t := Na(t)− ct. Then, N ′t
is submartingale and, from this fact, the following inequality
holds, for any δ > 0,

P(Na(t) < ct− δ) ≤ exp

(
−δ

2

8t

)
.

Proof of Theorem 2. Let N ′a(t) = Na(t)− ct. To prove that
N ′a(t) is sub-Martingale, we need to check E[N ′a(t)|N ′a(t−
1)] ≥ N ′a(t− 1). The inequality holds as follows:

E[N ′a(t)|N ′a(t− 1)] = E[Na(t)− ct|N ′a(t− 1)]

= E[Na(t− 1)− c(t− 1) + I(at = a)− c|N ′a(t− 1)]

= N ′a(t− 1) + E[I(at = a)− c|N ′a(t− 1)]

= N ′a(t− 1) + [πt]a − c
≥ N ′a(t− 1) (∵ [πt]a ≥ c).

For sub-Martingale random variable, since |N ′a(t)−N ′a(t−
1)| < 1 + c < 2 for all t, Azuma-Hoeffding inequality
holds, P (N ′a(t)−N ′a(0) ≤ −δ) = P (Na(t) ≤ ct− δ) ≤
exp

(
− δ

2

8t

)
.

B. Regret Bound

Theorem 3. For α > 0 and 1 > q > 0, the expected
cumulative regret of SERN is bounded as

RT ≤β
T∑
t=1

E
s1:t,a1:t

[
1√

(Na?(t− 1) + 1)

]

+ β
T∑
t=1

E
s1:t,a1:t

[
1√

(Nat(t− 1) + 1)

]

+

T∑
t=1

P(a? 6= â?t−1) + α ln(K)T,

where K = |A|, a? = arg maxa Es [ra(s)], and â?t =
arg maxa Es [r̂a(s; θt)].

Before proving the regret bound, we introduce a new
lemma for our policy distribution.

Lemma 3.1. For any vector r ∈ R|A|, let a distribution be
π := arg maxπ′ {Ea∼π′ [ra] + αS(π′)} . Then,

max
a

ra − Ea∼π [ra] ≤ α ln(K)



where K = |A|

Proof of Lemma 3.1. Let π′′ := arg maxπ′ Ea∼π′ [ra],
Then,

max
a

ra = E
a∼π′′

[ra] = E
a∼π′′

[ra] + αS(π′′) (∵ S(π′′) = 0)

≤ E
a∼π

[ra] + αS(π) ≤ E
a∼π

[ra] + αmax
π′

S(π′)

= E
a∼π

[ra] + α ln(K)

Consequently, maxa ra − Ea∼π [ra] ≤ α ln(K)

By using this Lemma, we prove the Theorem 3.

Proof of Theorem 3.

RT =

T∑
t=1

max
a′

E
s1:T

[ra′(st)]− E
s1:T ,a1:T

[rat(st)]

≤
T∑
t=1

max
a′

E
st

[ra′(st)]− E
st,a1:t

[rat(st)] .

We first compute the bound of the regret for each round
maxa′ Est [ra′(st)]− Est,a1:t [rat(st)].

Let us define a? := arg maxa′ Es [ra′(s)] and â?t−1 :=
arg maxa′ Es [r̂a′(s; θt−1)]. Then, the regret at round t is

max
a′

E
st

[ra′(st)]− E
st,a1:t

[rat(st)]

= E
st

[ra?(st)]− E
s1:t,a1:t

[r̂a?(st; θt−1)] (1)

+ E
s1:t,a1:t

[r̂a?(st; θt−1)]− E
s1:t,a1:t

[
r̂â?t−1

(st; θt−1)
]

(2)

+ E
s1:t,a1:t

[
r̂â?t−1

(st; θt−1)
]
− E
s1:t,a1:t

[r̂at(st; θt−1)] (3)

+ E
s1:t,a1:t

[r̂at(st; θt−1)]− E
st,a1:t

[rat(st)] . (4)

From Assumption 3, the (1) and (4) terms are caused by an
estimation error and are bounded as follows:

E
s1:t,a1:t

[r̂at(st; θt−1)− rat(st; θt−1)]

≤ E
s1:t,a1:t

[|r̂at(st; θt−1)− rat(st; θt−1)|]

≤ β E
s1:t,a1:t

[
1√

(Nat(t− 1) + 1)

]

and, similarly,

E
s1:t,a1:t

[r̂a?(st; θt−1)− ra?(st; θt−1)]

≤ β E
s1:t,a1:t

[
1√

(Na?(t− 1) + 1)

]
.

the (2) term comes from the failure probability for classifying
the optimal action using r̂a(st). Thus, we can rewrite it as
follows:

E
s1:t,a1:t

[r̂a?(st; θt−1)]− E
s1:t,a1:t

[
r̂â?t−1

(st; θt−1)
]

= E
s1:t,a1:t

[
I(a? 6= â?t−1)(r̂a?(st; θt−1)− r̂â?t−1

(st; θt−1))
]

≤ E
s1:t,a1:t

[I(a? 6= â?t−1)] = P(a? 6= â?t−1).

The (3) term is bounded by Lemma 3.1,

E
s1:t,a1:t

[
r̂â?t−1

(st; θt−1)
]
− E
s1:t,a1:t

[r̂at(st; θt−1)]

≤ max
a

E
s1:t,a1:t

[r̂a(st; θt−1)]− E
at∼πt

E
s1:t,a1:t−1

[r̂at(st; θt−1)]

≤ α ln(K)

Finally, we have,

max
a′

E
st

[ra′(st)]− E
st,a1:t

[rat(st)]

≤β E
s1:t,a1:t

[
1√

(Na?(t− 1) + 1)

]

+ β E
s1:t,a1:t

[
1√

(Nat(t− 1) + 1)

]
+ P(a? 6= â?t−1) + α ln(K).

Consequently, for the expected cumulative regret,

RT ≤β
T∑
t=1

E
s1:t,a1:t

[
1√

(Na?(t− 1) + 1)

]

+ β

T∑
t=1

E
s1:t,a1:t

[
1√

(Nat(t− 1) + 1)

]

+

T∑
t=1

P(a? 6= â?t−1) + α ln(K)T.

Theorem 4. Let α = α0

ln(Tp) for α0 > 0. Then, the expected
cumulative regret of SERN is bounded as

RT ≤
C0

c
3/2
0

T
3p+1

2 + C1

(
1− exp

(
−c20d1T−2p))−1

+ C2

(
1− exp

(
−c20d2T−2p))−1

+ α0 ln(K)T (ln(T p))−1 ,

where c0 = exp(−1/α0), C0 = 2
7
2K

3
2 β, C1 = 2βK, C2 =

2(K − 1) exp((β/∆2)2 − 1/4), d1 = 1/(32K2), and d2 =
1/(8K2).

Proof of Theorem 4. From Theorem 3, it is known that
the expected regret is bounded by three terms: estima-
tion error, the failure probability, and regularization. For

Es1:t,a1:t
[

1√
(Na(t−1)+1)

]
, since the proposed method ex-

plores every arms infinitely, estimation errors of all arms
become zero. Now, for any a, we can compute the upper



bound by using Theorem 1 and 2,

E
s1:t,a1:t

[
1√

(Na(t− 1) + 1)

]

= E
s1:t,a1:t

[
1√

(Na(t− 1) + 1)
I
(
Na(t− 1) >

ct

2

)]

+ E
s1:t,a1:t

[
1√

(Na(t− 1) + 1)
I
(
Na(t− 1) ≤ ct

2

)]

≤ E
s1:t,a1:t

[√
2

ct
I
(
Na(t− 1) >

ct

2

)]

+ E
s1:t,a1:t

[
I
(
Na(t− 1) ≤ ct

2

)]
≤
√

2

ct
P
(
Na(t− 1) >

ct

2

)
+ P

(
Na(t− 1) ≤ ct

2

)
≤
√

2

ct
· 2E [Na(t− 1)]

ct
+ P

(
Na(t− 1) ≤ ct

2

)
≤
√

2

ct
· 2t

ct
+ P

(
Na(t− 1) ≤ ct

2

)
≤23/2

c3/2
1√
t

+ exp

(
−c

2t

32

)
where for the last inequality we use the Markov inequality
and the Azuma Hoeffding inequality, respectively. Finally,
we get

E
s1:t−1,a1:t

[
1√

(Nat(t− 1) + 1)

]

= E
at

[
E

s1:t−1,a1:t−1

[
1√

(Nat(t− 1) + 1)

]]

≤ E
at

[
23/2

c3/2
1√
t

+ exp

(
−c

2t

32

)]
≤ 23/2

c3/2
1√
t

+ exp

(
−c

2t

32

)
and

E
s1:t−1,a1:t

[
1√

(Na?(t− 1) + 1)

]

= E
at

[
E

s1:t−1,a1:t−1

[
1√

(Na?(t− 1) + 1)

]]

≤ E
at

[
23/2

c3/2
1√
t

+ exp

(
−c

2t

32

)]
≤ 23/2

c3/2
1√
t

+ exp

(
−c

2t

32

)
.

For the failure probability P(a? 6= â?t−1), let us define
an estimation error bound of Assumption 3 as βNa(t−1) :=

β√
Na(t−1)+1

. We obtain the bound as follows:

P (a? 6= â?t−1) = P
(
r̂a?(st) < r̂â?t−1

(st)
)

≤
∑
a6=a?

P (r̂a?(st) < r̂a(st))

≤
∑
a6=a?

P
(
ra?(st)− βNa? (t−1) < ra(st) + βNa(t−1)

)
≤
∑
a6=a?

P
(
∆a(st) < βNa? (t−1) + βNa(t−1)

)
≤
∑
a6=a?

P
(
∆2 < βNa? (t−1) + βNa(t−1)

)
≤
∑
a6=a?

P
(

∆2

2
< βNa? (t−1)

)
+ P

(
∆2

2
< βNa(t−1)

)
.

Now, we can bound P
(

∆2

2 < βNa(t−1)

)
using Theorem 2,

P
(

∆2

2
< βNa(t−1)

)
= P

(
Na(t− 1) <

(
2β

∆2

)2

− 1

)

≤ exp

(
− (ct− (2β/∆2)2 + 1)2

8t

)
= exp

(
−c

2t

8
+

(2β/∆2)2 − 1

4
− ((2β/∆2)2 − 1)2

8t

)
≤ exp

(
(2β/∆2)2 − 1

4

)
exp

(
−c

2t

8

)

Hence, we get,

P (a? 6= â?t−1)

≤
∑
a6=a?

2 exp

(
(2β/∆2)2 − 1

4

)
exp

(
−c

2t

8

)

= 2(K − 1) exp
(
(β/∆2)2 − 1/4

)
exp

(
−c

2t

8

)

Let C0 = 2
7
2K

3
2 β, C1 = 2β, C2 = 2(K−1) exp((β/∆2)2−

1/4), d1 = 1/(32K2), and d2 = 1/(8K2). By combining
all bounds, RT can be bounded as follows:

RT ≤
25/2β

c3/2

T∑
t=1

1√
t

+ 2β

T∑
t=1

exp

(
−c

2t

32

)

+ 2(K − 1) exp
(
(β/∆2)2 − 1/4

) T∑
t=1

exp

(
−c

2t

8

)
+ α ln(K)T

=
C0K

−3/2/2

c3/2

T∑
t=1

1√
t

+ C1

T∑
t=1

exp

(
−c

2t

32

)

+ C2

T∑
t=1

exp

(
−c

2t

8

)
+ α ln(K)T

≤C0K
−3/2/2

c3/2
(1 + 2

√
T − 2

√
2)

+ C1

exp
(
−c2T/32

)
− 1

exp (−c2/32)− 1

+ C2

exp
(
−c2T/8

)
− 1

exp (−c2/8)− 1
+ α ln(K)T

≤C0K
−3/2

c3/2

√
T +

C1

1− exp (−c2/32)
+

C2

1− exp (−c2/8)

+ α ln(K)T.

Note that all terms are sub-linear except for α ln(K)T . To
make α ln(K)T sub-linear, we set α to be α0(ln(T p))−1

with α0 > 0. Then, the lower bound c becomes
exp

(
− 1
α0

)
KTp



and let c0 := exp
(
− 1
α0

)
. Finally,

RT ≤
C0K

−3/2

c3/2

√
T +

C1

1− exp (−c2/32)
+

C2

1− exp (−c2/8)

+ α ln(K)T

≤ C0

c
3/2
0

T
3p+1

2 + C1(1− exp(−T−2p · c20/(32K2)))−1

+ C2(1− exp(−T−2p · c20/(8K2)))−1

+ α0 ln(K)T (ln(T p))−1

≤ C0

c
3/2
0

T
3p+1

2 + C1(1− exp(−c20d1T−2p))−1

+ C2(1− exp(−c20d2T−2p))−1

+ α0 ln(K)T (ln(T p))−1.

Theorem 5. For 1/3 > p > 0, if the number of rounds, T ,
goes to infinity, then, time-averaged regret converges to zero:
limT→∞

RT
T = 0.

Proof of Theorem 5. To prove that limT→∞
RT
T = 0, we

show that the upper bound of RT /T converges to zero, then,
proof will be done since the lower bound of RT /T is also
zero.
RT
T
≤ C0

c
3/2
0

T
3p−1

2 + C1(1− exp(−d1T−2p))−1T−1

+ C2(1− exp(−d2T−2p))−1T−1

+ ln(K)(ln(T p))−1.

Since 1/3 > p > 0, T(3p−1)/2 converges to zero and
ln(T p)−1 also converges to zero. To show that the second
and third terms converge to zero, we prove that, for a positive
a, limx→∞(1− exp(−ax−2p)x)−1x−1 = 0 as follows:

lim
x→∞

(1− exp(−ax−2p))−1ax−2p · x2p−1/a = 1 · 0 = 0

where limz→0
z

exp(z)−1 = 1 is used.
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