No-Regret Shannon Entropy Regularized Neural Contextual Bandit Online Learning for Robotic Grasping: Supplementary Material

Kyungjae Lee, Jaegu Choy, Yunho Choi, Hogun Kee, and Songhwai Oh

APPENDIX

A. Infinite Exploration

Theorem 1. For any arm a, the expected count has the following lower bound, $\mathbb{E}[N_a(t)] \ge ct$ where $c = \frac{1}{K} \exp(-\frac{1}{\alpha})$.

Before starting the proof of Theorem 1, we first prove the following Lemma.

Lemma 1.1. The policy of SERN has a constant lower bound greater than zero, i.e., $[\pi_t]_a \ge c > 0$, where $c = \frac{1}{K} \exp(-\frac{1}{\alpha})$.

Proof of Lemma 1.1. For each round, the proposed method samples an action from

$$\pi_t := \arg \max_{\pi} \left\{ \mathop{\mathbb{E}}_{a \sim \pi} \left[\hat{r}_a(s_t; \theta_{t-1}) \right] + \alpha S(\pi) \right\}$$

Thus, the policy distribution is the optimal solution of

$$\max_{\pi} \left\{ \mathbb{E}_{a \sim \pi} [\hat{r}_a(s_t; \theta_{t-1})] + \alpha S(\pi) \right\}$$

which is a concave maximization problem since $\mathbb{E}_{a \sim \pi} \left[\hat{r}_a(s_t; \theta_{t-1}) \right]$ is linear for π and $\alpha S(\pi)$ is concave for π . The domain of this problem has two constraints, i.e., $\sum_a \pi_a - 1 = 0$ and $\pi_a \ge 0$. Since the problem is concave, strong duality holds and let us denote a dual variable for $\sum_a \pi_a - 1 = 0$ as μ and dual variable for positivity $\pi_a \ge 0$ as λ_a . Then, from Karush-Kuhn-Tucker (KKT) conditions, we have

$$\hat{r}_a(s_t; \theta_{t-1}) - \alpha \ln(\pi_a) - \alpha + \lambda_a + \mu = 0.$$

We first compute μ by multiplying π_a to both sides and summing up with respect to a. Then, $\mu = \alpha - \alpha S(\pi) - \mathbb{E}_{a \sim \pi} [\hat{r}_a(s_t; \theta_{t-1})]$ where $\lambda_a \pi_a = 0$, one of KKT conditions, is used. By using $S(\pi) \leq -\ln(1/K)$ and $\mathbb{E}_{a \sim \pi} [\hat{r}_a(s_t; \theta_{t-1})] \leq 1, \mu \geq \alpha + \alpha \ln(1/K) - 1$. Since $\ln(x)$ requires x > 0 and for all $a, \pi_a > 0$ holds, $\lambda_a = 0$ for all afrom KKT conditions. Thus,

$$\ln(\pi_a) = \frac{\hat{r}_a(s_t; \theta_{t-1}) - \alpha + \mu}{\alpha} \ge \ln(1/K) - \frac{1}{\alpha}$$

where $\hat{r}_a \geq 0$. Finally, we get

$$\pi_a \ge \frac{1}{K} \exp\left(-\frac{1}{\alpha}\right).$$

K. Lee, J. Choy, Y. Choi, H. Kee, and S. Oh are with the Department of Electrical and Computer Engineering and ASRI, Seoul National University, Seoul 08826, Korea (e-mail: {kyungjae.lee, jaegu.choy, yunho.choi}@rllab.snu.ac.kr, {hogunkee, songhwai}@snu.ac.kr) The proof of Theorem 1 is as follows.

Proof of Theorem 1. Using Lemma 1.1, for all t and a, $[\pi_t]_a \ge c$ where $c = \frac{1}{K} \exp(-\frac{1}{\alpha})$. Thus, $\mathbb{E}[N_a(t)] = \sum_t [\pi_t]_a \ge ct$.

Theorem 2. For any arm a, let $N'_t := N_a(t) - ct$. Then, N'_t is submartingale and, from this fact, the following inequality holds, for any $\delta > 0$,

$$\mathbb{P}(N_a(t) < ct - \delta) \le \exp\left(-\frac{\delta^2}{8t}\right).$$

Proof of Theorem 2. Let $N'_a(t) = N_a(t) - ct$. To prove that $N'_a(t)$ is sub-Martingale, we need to check $\mathbb{E}[N'_a(t)|N'_a(t-1)] \ge N'_a(t-1)$. The inequality holds as follows:

$$\begin{split} \mathbb{E}[N_{a}'(t)|N_{a}'(t-1)] &= \mathbb{E}[N_{a}(t) - ct|N_{a}'(t-1)] \\ &= \mathbb{E}[N_{a}(t-1) - c(t-1) + \mathbb{I}(a_{t} = a) - c|N_{a}'(t-1)] \\ &= N_{a}'(t-1) + \mathbb{E}[\mathbb{I}(a_{t} = a) - c|N_{a}'(t-1)] \\ &= N_{a}'(t-1) + [\pi_{t}]_{a} - c \\ &\geq N_{a}'(t-1) \quad (\because [\pi_{t}]_{a} \ge c). \end{split}$$

For sub-Martingale random variable, since $|N'_a(t) - N'_a(t-1)| < 1 + c < 2$ for all t, Azuma-Hoeffding inequality holds, $\mathbb{P}(N'_a(t) - N'_a(0) \le -\delta) = \mathbb{P}(N_a(t) \le ct - \delta) \le \exp\left(-\frac{\delta^2}{8t}\right)$.

B. Regret Bound

Theorem 3. For $\alpha > 0$ and 1 > q > 0, the expected cumulative regret of SERN is bounded as

$$\mathcal{R}_{T} \leq \beta \sum_{t=1}^{T} \mathbb{E}_{s_{1:t},a_{1:t}} \left[\frac{1}{\sqrt{(N_{a^{\star}}(t-1)+1)}} \right] \\ + \beta \sum_{t=1}^{T} \mathbb{E}_{s_{1:t},a_{1:t}} \left[\frac{1}{\sqrt{(N_{a_{t}}(t-1)+1)}} \right] \\ + \sum_{t=1}^{T} \mathbb{P}(a^{\star} \neq \hat{a}_{t-1}^{\star}) + \alpha \ln(K)T,$$

where $K = |\mathcal{A}|$, $a^* = \arg \max_a \mathbb{E}_s [r_a(s)]$, and $\hat{a}_t^* = \arg \max_a \mathbb{E}_s [\hat{r}_a(s; \theta_t)]$.

Before proving the regret bound, we introduce a new lemma for our policy distribution.

Lemma 3.1. For any vector $r \in \mathbb{R}^{|\mathcal{A}|}$, let a distribution be $\pi := \arg \max_{\pi'} \{ \mathbb{E}_{a \sim \pi'} [r_a] + \alpha S(\pi') \}$. Then,

$$\max_{a} r_a - \mathbb{E}_{a \sim \pi} \left[r_a \right] \le \alpha \ln(K)$$

where $K = |\mathcal{A}|$

Proof of Lemma 3.1. Let $\pi'' := \arg \max_{\pi'} \mathbb{E}_{a \sim \pi'} [r_a]$, Then,

$$\max_{a} r_{a} = \mathop{\mathbb{E}}_{a \sim \pi''} [r_{a}] = \mathop{\mathbb{E}}_{a \sim \pi''} [r_{a}] + \alpha S(\pi'') \quad (\because S(\pi'') = 0)$$
$$\leq \mathop{\mathbb{E}}_{a \sim \pi} [r_{a}] + \alpha S(\pi) \leq \mathop{\mathbb{E}}_{a \sim \pi} [r_{a}] + \alpha \max_{\pi'} S(\pi')$$
$$= \mathop{\mathbb{E}}_{a \sim \pi} [r_{a}] + \alpha \ln(K)$$

Consequently, $\max_a r_a - \mathbb{E}_{a \sim \pi} [r_a] \leq \alpha \ln(K)$

By using this Lemma, we prove the Theorem 3.

Proof of Theorem 3.

$$\mathcal{R}_{T} = \sum_{t=1}^{T} \max_{a'} \mathop{\mathbb{E}}_{s_{1:T}} [r_{a'}(s_{t})] - \mathop{\mathbb{E}}_{s_{1:T},a_{1:T}} [r_{a_{t}}(s_{t})]$$
$$\leq \sum_{t=1}^{T} \max_{a'} \mathop{\mathbb{E}}_{s_{t}} [r_{a'}(s_{t})] - \mathop{\mathbb{E}}_{s_{t},a_{1:t}} [r_{a_{t}}(s_{t})].$$

We first compute the bound of the regret for each round $\max_{a'} \mathbb{E}_{s_t} [r_{a'}(s_t)] - \mathbb{E}_{s_t, a_{1:t}} [r_{a_t}(s_t)].$

Let us define $a^* := \arg \max_{a'} \mathbb{E}_s [r_{a'}(s)]$ and $\hat{a}_{t-1}^* := \arg \max_{a'} \mathbb{E}_s [\hat{r}_{a'}(s; \theta_{t-1})]$. Then, the regret at round t is

$$\max_{a'} \mathop{\mathbb{E}}_{s_{t}} [r_{a'}(s_{t})] - \mathop{\mathbb{E}}_{s_{t},a_{1:t}} [r_{a_{t}}(s_{t})] \\= \mathop{\mathbb{E}}_{s_{t}} [r_{a^{\star}}(s_{t})] - \mathop{\mathbb{E}}_{s_{1:t},a_{1:t}} [\hat{r}_{a^{\star}}(s_{t};\theta_{t-1})]$$
(1)

$$+ \mathop{\mathbb{E}}_{s_{1:t},a_{1:t}} \left[\hat{r}_{a^{\star}}(s_t;\theta_{t-1}) \right] - \mathop{\mathbb{E}}_{s_{1:t},a_{1:t}} \left[\hat{r}_{\hat{a}_{t-1}^{\star}}(s_t;\theta_{t-1}) \right]$$
(2)

$$+ \mathbb{E}_{s_{1:t},a_{1:t}} \left[\hat{r}_{\hat{a}_{t-1}^{\star}}(s_t;\theta_{t-1}) \right] - \mathbb{E}_{s_{1:t},a_{1:t}} \left[\hat{r}_{a_t}(s_t;\theta_{t-1}) \right] \quad (3)$$

$$+ \mathop{\mathbb{E}}_{s_{1:t},a_{1:t}} \left[\hat{r}_{a_t}(s_t;\theta_{t-1}) \right] - \mathop{\mathbb{E}}_{s_t,a_{1:t}} \left[r_{a_t}(s_t) \right].$$
(4)

From Assumption 3, the (1) and (4) terms are caused by an estimation error and are bounded as follows:

$$\mathbb{E}_{s_{1:t},a_{1:t}} \left[\hat{r}_{a_t}(s_t; \theta_{t-1}) - r_{a_t}(s_t; \theta_{t-1}) \right] \\
\leq \mathbb{E}_{s_{1:t},a_{1:t}} \left[|\hat{r}_{a_t}(s_t; \theta_{t-1}) - r_{a_t}(s_t; \theta_{t-1})| \right] \\
\leq \beta \mathbb{E}_{s_{1:t},a_{1:t}} \left[\frac{1}{\sqrt{(N_{a_t}(t-1)+1)}} \right]$$

and, similarly,

$$\mathbb{E}_{s_{1:t},a_{1:t}} \left[\hat{r}_{a^{\star}}(s_t;\theta_{t-1}) - r_{a^{\star}}(s_t;\theta_{t-1}) \right]$$

$$\leq \beta \mathbb{E}_{s_{1:t},a_{1:t}} \left[\frac{1}{\sqrt{(N_{a^{\star}}(t-1)+1)}} \right].$$

the (2) term comes from the failure probability for classifying the optimal action using $\hat{r}_a(s_t)$. Thus, we can rewrite it as follows:

$$\mathbb{E}_{\substack{s_{1:t},a_{1:t}}} \left[\hat{r}_{a^{\star}}(s_{t};\theta_{t-1}) \right] - \mathbb{E}_{\substack{s_{1:t},a_{1:t}}} \left[\hat{r}_{\hat{a}^{\star}_{t-1}}(s_{t};\theta_{t-1}) \right] \\
= \mathbb{E}_{\substack{s_{1:t},a_{1:t}}} \left[\mathbb{I}(a^{\star} \neq \hat{a}^{\star}_{t-1}) (\hat{r}_{a^{\star}}(s_{t};\theta_{t-1}) - \hat{r}_{\hat{a}^{\star}_{t-1}}(s_{t};\theta_{t-1})) \right] \\
\leq \mathbb{E}_{\substack{s_{1:t},a_{1:t}}} \left[\mathbb{I}(a^{\star} \neq \hat{a}^{\star}_{t-1}) \right] = \mathbb{P}(a^{\star} \neq \hat{a}^{\star}_{t-1}).$$

The (3) term is bounded by Lemma 3.1,

$$\mathbb{E}_{s_{1:t},a_{1:t}} \left[\hat{r}_{\hat{a}_{t-1}^{\star}}(s_{t};\theta_{t-1}) \right] - \mathbb{E}_{s_{1:t},a_{1:t}} \left[\hat{r}_{a_{t}}(s_{t};\theta_{t-1}) \right] \\
\leq \max_{a} \mathbb{E}_{s_{1:t},a_{1:t}} \left[\hat{r}_{a}(s_{t};\theta_{t-1}) \right] - \mathbb{E}_{a_{t} \sim \pi_{t}} \mathbb{E}_{s_{1:t},a_{1:t-1}} \left[\hat{r}_{a_{t}}(s_{t};\theta_{t-1}) \right] \\
\leq \alpha \ln(K)$$

 \Box Finally, we have,

$$\begin{split} \max_{a'} & \underset{s_t}{\mathbb{E}} \left[r_{a'}(s_t) \right] - \underset{s_t, a_{1:t}}{\mathbb{E}} \left[r_{a_t}(s_t) \right] \\ \leq & \beta \underset{s_{1:t}, a_{1:t}}{\mathbb{E}} \left[\frac{1}{\sqrt{(N_{a^{\star}}(t-1)+1)}} \right] \\ & + \beta \underset{s_{1:t}, a_{1:t}}{\mathbb{E}} \left[\frac{1}{\sqrt{(N_{a_t}(t-1)+1)}} \right] \\ & + \mathbb{P}(a^{\star} \neq \hat{a}_{t-1}^{\star}) + \alpha \ln(K). \end{split}$$

Consequently, for the expected cumulative regret,

$$\mathcal{R}_{T} \leq \beta \sum_{t=1}^{T} \mathbb{E}_{s_{1:t},a_{1:t}} \left[\frac{1}{\sqrt{(N_{a^{\star}}(t-1)+1)}} \right] \\ + \beta \sum_{t=1}^{T} \mathbb{E}_{s_{1:t},a_{1:t}} \left[\frac{1}{\sqrt{(N_{a_{t}}(t-1)+1)}} \right] \\ + \sum_{t=1}^{T} \mathbb{P}(a^{\star} \neq \hat{a}_{t-1}^{\star}) + \alpha \ln(K)T.$$

Theorem 4. Let $\alpha = \frac{\alpha_0}{\ln(T^p)}$ for $\alpha_0 > 0$. Then, the expected cumulative regret of SERN is bounded as

$$\mathcal{R}_T \leq \frac{C_0}{c_0^{3/2}} T^{\frac{3p+1}{2}} + C_1 \left(1 - \exp\left(-c_0^2 d_1 T^{-2p}\right) \right)^{-1} + C_2 \left(1 - \exp\left(-c_0^2 d_2 T^{-2p}\right) \right)^{-1} + \alpha_0 \ln(K) T \left(\ln(T^p)\right)^{-1},$$

where $c_0 = \exp(-1/\alpha_0)$, $C_0 = 2^{\frac{7}{2}}K^{\frac{3}{2}}\beta$, $C_1 = 2\beta K$, $C_2 = 2(K-1)\exp((\beta/\Delta_2)^2 - 1/4)$, $d_1 = 1/(32K^2)$, and $d_2 = 1/(8K^2)$.

Proof of Theorem 4. From Theorem 3, it is known that the expected regret is bounded by three terms: estimation error, the failure probability, and regularization. For $\mathbb{E}_{s_{1:t},a_{1:t}}\left[\frac{1}{\sqrt{(N_a(t-1)+1)}}\right]$, since the proposed method explores every arms infinitely, estimation errors of all arms become zero. Now, for any *a*, we can compute the upper

bound by using Theorem 1 and 2,

$$\begin{split} & \underset{s_{1:t},a_{1:t}}{\mathbb{E}} \left[\frac{1}{\sqrt{(N_a(t-1)+1)}} \right] \\ &= \underset{s_{1:t},a_{1:t}}{\mathbb{E}} \left[\frac{1}{\sqrt{(N_a(t-1)+1)}} \mathbb{I} \left(N_a(t-1) > \frac{ct}{2} \right) \right] \\ &+ \underset{s_{1:t},a_{1:t}}{\mathbb{E}} \left[\frac{1}{\sqrt{(N_a(t-1)+1)}} \mathbb{I} \left(N_a(t-1) \le \frac{ct}{2} \right) \right] \\ &\leq \underset{s_{1:t},a_{1:t}}{\mathbb{E}} \left[\sqrt{\frac{2}{ct}} \mathbb{I} \left(N_a(t-1) > \frac{ct}{2} \right) \right] \\ &+ \underset{s_{1:t},a_{1:t}}{\mathbb{E}} \left[\mathbb{I} \left(N_a(t-1) \le \frac{ct}{2} \right) \right] \\ &\leq \sqrt{\frac{2}{ct}} \mathbb{P} \left(N_a(t-1) > \frac{ct}{2} \right) + \mathbb{P} \left(N_a(t-1) \le \frac{ct}{2} \right) \\ &\leq \sqrt{\frac{2}{ct}} \cdot \frac{2\mathbb{E} \left[N_a(t-1) \right]}{ct} + \mathbb{P} \left(N_a(t-1) \le \frac{ct}{2} \right) \\ &\leq \sqrt{\frac{2}{ct}} \cdot \frac{2t}{ct} + \mathbb{P} \left(N_a(t-1) \le \frac{ct}{2} \right) \\ &\leq \sqrt{\frac{2}{ct}} \cdot \frac{2t}{ct} + \mathbb{P} \left(N_a(t-1) \le \frac{ct}{2} \right) \end{split}$$

where for the last inequality we use the Markov inequality and the Azuma Hoeffding inequality, respectively. Finally, we get

$$\mathbb{E}_{s_{1:t-1},a_{1:t}} \left[\frac{1}{\sqrt{(N_{a_t}(t-1)+1)}} \right]$$

$$= \mathbb{E}_{a_t} \left[\mathbb{E}_{s_{1:t-1},a_{1:t-1}} \left[\frac{1}{\sqrt{(N_{a_t}(t-1)+1)}} \right] \right]$$

$$\leq \mathbb{E}_{a_t} \left[\frac{2^{3/2}}{c^{3/2}} \frac{1}{\sqrt{t}} + \exp\left(-\frac{c^2 t}{32}\right) \right] \leq \frac{2^{3/2}}{c^{3/2}} \frac{1}{\sqrt{t}} + \exp\left(-\frac{c^2 t}{32}\right)$$
and

$$\mathbb{E}_{s_{1:t-1},a_{1:t}} \left[\frac{1}{\sqrt{(N_{a^{\star}}(t-1)+1)}} \right] \\
= \mathbb{E}_{a_{t}} \left[\mathbb{E}_{s_{1:t-1},a_{1:t-1}} \left[\frac{1}{\sqrt{(N_{a^{\star}}(t-1)+1)}} \right] \right] \\
\leq \mathbb{E}_{a_{t}} \left[\frac{2^{3/2}}{c^{3/2}} \frac{1}{\sqrt{t}} + \exp\left(-\frac{c^{2}t}{32}\right) \right] \leq \frac{2^{3/2}}{c^{3/2}} \frac{1}{\sqrt{t}} + \exp\left(-\frac{c^{2}t}{32}\right).$$

For the failure probability $\mathbb{P}(a^{\star} \neq \hat{a}_{t-1}^{\star})$, let us define an estimation error bound of Assumption 3 as $\beta_{N_a(t-1)} := \frac{\beta}{\sqrt{N_a(t-1)+1}}$. We obtain the bound as follows:

$$\mathbb{P}\left(a^{\star} \neq \hat{a}_{t-1}^{\star}\right) = \mathbb{P}\left(\hat{r}_{a^{\star}}(s_{t}) < \hat{r}_{\hat{a}_{t-1}^{\star}}(s_{t})\right)$$

$$\leq \sum_{a \neq a^{\star}} \mathbb{P}\left(\hat{r}_{a^{\star}}(s_{t}) < \hat{r}_{a}(s_{t})\right)$$

$$\leq \sum_{a \neq a^{\star}} \mathbb{P}\left(r_{a^{\star}}(s_{t}) - \beta_{N_{a^{\star}}(t-1)} < r_{a}(s_{t}) + \beta_{N_{a}(t-1)}\right)$$

$$\leq \sum_{a \neq a^{\star}} \mathbb{P}\left(\Delta_{a}(s_{t}) < \beta_{N_{a^{\star}}(t-1)} + \beta_{N_{a}(t-1)}\right)$$

$$\leq \sum_{a \neq a^{\star}} \mathbb{P}\left(\Delta_{2} < \beta_{N_{a^{\star}}(t-1)} + \beta_{N_{a}(t-1)}\right)$$

$$\leq \sum_{a \neq a^{\star}} \mathbb{P}\left(\frac{\Delta_{2}}{2} < \beta_{N_{a^{\star}}(t-1)}\right) + \mathbb{P}\left(\frac{\Delta_{2}}{2} < \beta_{N_{a}(t-1)}\right).$$

Now, we can bound $\mathbb{P}\left(\frac{\Delta_2}{2} < \beta_{N_a(t-1)}\right)$ using Theorem 2,

$$\mathbb{P}\left(\frac{\Delta_2}{2} < \beta_{N_a(t-1)}\right) = \mathbb{P}\left(N_a(t-1) < \left(\frac{2\beta}{\Delta_2}\right)^2 - 1\right)$$

$$\leq \exp\left(-\frac{(ct - (2\beta/\Delta_2)^2 + 1)^2}{8t}\right)$$

$$= \exp\left(-\frac{c^2t}{8} + \frac{(2\beta/\Delta_2)^2 - 1}{4} - \frac{((2\beta/\Delta_2)^2 - 1)^2}{8t}\right)$$

$$\leq \exp\left(\frac{(2\beta/\Delta_2)^2 - 1}{4}\right) \exp\left(-\frac{c^2t}{8}\right)$$

Hence, we get,

$$\mathbb{P}\left(a^{\star} \neq \hat{a}_{t-1}^{\star}\right)$$

$$\leq \sum_{a \neq a^{\star}} 2 \exp\left(\frac{(2\beta/\Delta_2)^2 - 1}{4}\right) \exp\left(-\frac{c^2 t}{8}\right)$$

$$= 2(K-1) \exp\left((\beta/\Delta_2)^2 - 1/4\right) \exp\left(-\frac{c^2 t}{8}\right)$$

Let $C_0 = 2^{\frac{7}{2}} K^{\frac{3}{2}} \beta$, $C_1 = 2\beta$, $C_2 = 2(K-1) \exp((\beta/\Delta_2)^2 - 1/4)$, $d_1 = 1/(32K^2)$, and $d_2 = 1/(8K^2)$. By combining all bounds, \mathcal{R}_T can be bounded as follows:

$$\begin{aligned} \mathcal{R}_T &\leq \frac{2^{5/2} \beta}{c^{3/2}} \sum_{t=1}^T \frac{1}{\sqrt{t}} + 2\beta \sum_{t=1}^T \exp\left(-\frac{c^2 t}{32}\right) \\ &+ 2(K-1) \exp\left((\beta/\Delta_2)^2 - 1/4\right) \sum_{t=1}^T \exp\left(-\frac{c^2 t}{8}\right) \\ &+ \alpha \ln(K)T \\ &= \frac{C_0 K^{-3/2}/2}{c^{3/2}} \sum_{t=1}^T \frac{1}{\sqrt{t}} + C_1 \sum_{t=1}^T \exp\left(-\frac{c^2 t}{32}\right) \\ &+ C_2 \sum_{t=1}^T \exp\left(-\frac{c^2 t}{8}\right) + \alpha \ln(K)T \\ &\leq \frac{C_0 K^{-3/2}/2}{c^{3/2}} (1 + 2\sqrt{T} - 2\sqrt{2}) \\ &+ C_1 \frac{\exp\left(-c^2 T/32\right) - 1}{\exp\left(-c^2/32\right) - 1} \\ &+ C_2 \frac{\exp\left(-c^2 T/8\right) - 1}{\exp\left(-c^2/8\right) - 1} + \alpha \ln(K)T \\ &\leq \frac{C_0 K^{-3/2}}{c^{3/2}} \sqrt{T} + \frac{C_1}{1 - \exp\left(-c^2/32\right)} + \frac{C_2}{1 - \exp\left(-c^2/8\right)} \\ &+ \alpha \ln(K)T. \end{aligned}$$

Note that all terms are sub-linear except for $\alpha \ln(K)T$. To make $\alpha \ln(K)T$ sub-linear, we set α to be $\alpha_0(\ln(T^p))^{-1}$ with $\alpha_0 > 0$. Then, the lower bound c becomes $\frac{\exp\left(-\frac{1}{\alpha_0}\right)}{KT^p}$

and let
$$c_0 := \exp\left(-\frac{1}{\alpha_0}\right)$$
. Finally,

$$\mathcal{R}_T \leq \frac{C_0 K^{-3/2}}{c^{3/2}} \sqrt{T} + \frac{C_1}{1 - \exp\left(-c^2/32\right)} + \frac{C_2}{1 - \exp\left(-c^2/8\right)} + \alpha \ln(K)T$$

$$\leq \frac{C_0}{c_0^{3/2}} T^{\frac{3p+1}{2}} + C_1 (1 - \exp\left(-T^{-2p} \cdot c_0^2/(32K^2)\right))^{-1} + C_2 (1 - \exp\left(-T^{-2p} \cdot c_0^2/(8K^2)\right))^{-1} + \alpha_0 \ln(K)T(\ln(T^p))^{-1}$$

$$\leq \frac{C_0}{c_0^{3/2}} T^{\frac{3p+1}{2}} + C_1 (1 - \exp\left(-c_0^2 d_1 T^{-2p}\right))^{-1} + C_2 (1 - \exp\left(-c_0^2 d_2 T^{-2p}\right))^{-1} + \alpha_0 \ln(K)T(\ln(T^p))^{-1}.$$

Theorem 5. For 1/3 > p > 0, if the number of rounds, T, goes to infinity, then, time-averaged regret converges to zero: $\lim_{T\to\infty} \frac{\mathcal{R}_T}{T} = 0.$

Proof of Theorem 5. To prove that $\lim_{T\to\infty} \frac{\mathcal{R}_T}{T} = 0$, we show that the upper bound of \mathcal{R}_T/T converges to zero, then, proof will be done since the lower bound of \mathcal{R}_T/T is also zero.

$$\frac{\mathcal{R}_T}{T} \leq \frac{C_0}{c_0^{3/2}} T^{\frac{3p-1}{2}} + C_1 (1 - \exp(-d_1 T^{-2p}))^{-1} T^{-1} + C_2 (1 - \exp(-d_2 T^{-2p}))^{-1} T^{-1} + \ln(K) (\ln(T^p))^{-1}.$$

Since 1/3 > p > 0, $T_{(3p-1)/2}$ converges to zero and $\ln(T^p)^{-1}$ also converges to zero. To show that the second and third terms converge to zero, we prove that, for a positive a, $\lim_{x\to\infty}(1-\exp(-ax^{-2p})x)^{-1}x^{-1}=0$ as follows:

$$\lim_{x \to \infty} (1 - \exp(-ax^{-2p}))^{-1} ax^{-2p} \cdot x^{2p-1} / a = 1 \cdot 0 = 0$$

where $\lim_{z \to 0} \frac{z}{\exp(z) - 1} = 1$ is used. \Box