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APPENDIX
A. Infinite Exploration

Theorem 1. For any arm a, the expected count has the fol-
lowing lower bound, B [N, (t)] > ct where ¢ = 7= exp(—2).

T a
Before starting the proof of Theorem |1} we first prove the
following Lemma.

Lemma 1.1. The policy of SERN has a constant lower
bound greater than zero, ie., [mt], > ¢ > 0, where ¢ =
% exp(fé).

Proof of Lemma [[.1] For each round, the proposed method
samples an action from

T = argmgx{ E [fa(st;ﬁt_ﬂ] + 045(77)} .

Thus, the policy distribution is the optimal solution of

me{ B [alos00-1)) + a5}

7" an~T

which is a concave maximization problem since
Ea~r [Pa(St;01—1)] is linear for m and «S(w) is concave
for . The domain of this problem has two constraints, i.e.,
Za 7, — 1 =0 and 7, > 0. Since the problem is concave,
strong duality holds and let us denote a dual variable for
Y aTa—1=0as p and dual variable for positivity 7, > 0
as A,. Then, from Karush-Kuhn-Tucker (KKT) conditions,
we have

Ta(St; 0i—1) — aln(my) —a+ Ay + 1 = 0.

We first compute p by multiplying 7, to both sides
and summing up with respect to a. Then, p = o —
aS(m) — Ea~r [Fa(se;0:-1)] where A\ym, = 0, one of
KKT conditions, is used. By using S(7) < —In(1/K) and
Ea~r [Fa(st;0:-1)] <1, p > a+aln(l/K)—1. Since In(z)
requires > 0 and for all a, m, > 0 holds, A\, = 0 for all a
from KKT conditions. Thus,

Fa(S1;0i-1) —a+ > In(1/K) — 1
« - o

In(m,) =

where 7, > 0. Finally, we get
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The proof of Theorem [T]is as follows.
Proof of Theorem[I} Using Lemma for all ¢ and a,
[m)a > ¢ where ¢ = 4 exp(—2). Thus, E[N,(t)] =
doilmila > ct. O

Theorem 2. For any arm a, let N := N, (t) — ct. Then, N;
is submartingale and, from this fact, the following inequality
holds, for any § > 0,

P(N,(t) < ct — 6) < exp (J;) .

Proof of Theorem [2] Let N/ (t) = N,(t) — ct. To prove that
N!(t) is sub-Martingale, we need to check E[N/ (t)| N/ (t —
1)] > N!(t — 1). The inequality holds as follows:
E[Nq (t)|Na(t = 1)] = E[Na(t) — ct|Na(t — 1)]

=E[No(t — 1) —c(t — 1) +I(ar = a) — ¢|Na(t — 1)]

= Ni(t — 1) + E[l(a; = a) — ¢|Na(t — 1)]

= Nt 1)+ [mia —c

> Na(t=1) ([l > c).
For sub-Martingale random variable, since | N/ (t) — N/ (t —
)] < 14+ ¢ < 2 for all ¢, Azuma-Hoeffding inequality
holds, P (N/(t) — N.,(0) < —=0) = P(Ny(t) <ct—40) <
exp (—g—i . O
B. Regret Bound
Theorem 3. For « > 0 and 1 > q > 0, the expected
cumulative regret of SERN is bounded as

1
(Nox(t=1) +1)
1
(No, (t=1)+1)

T
Rr<BY E
t=1

S1:t,01:¢

T
+8Y . E

$1:£,07:
t—1 1:t,Q1:t

T
+ Y P(a* # 1) + aln(K)T,
t=1

where K = |A|, a* =
argmax, B [Fo(s;04))].

argmax, Eg [rq(s)], and af =

Before proving the regret bound, we introduce a new
lemma for our policy distribution.

Lemma 3.1. For any vector r € RIAl let a distribution be
7= argmax, {Eq~n [Fa] + @S(7')} . Then,

—Eopmr [1a] < aln(K)

maxrg
a



where K = |A|
Proof of Lemma 3.1} Let n” := argmax, Equr [Ta)s
Then,
maxre = E [ra]= E [ra]+ aS(#") (- S(=")=0)
< :IEI: [Ta] + aaS(:r) < E [ra] + amax S(n')

E [re] + aln(K)

anT

Consequently, max, rq — Eqor [Ta] < aln(K) O

By using this Lemma, we prove the Theorem [3]

Proof of Theorem [3]
T
Rr = max [E [rq(s¢)] — E Ta, (S
T = Z:: aX51T[ (st)] SI:TYGLT[ o (s1)]
T
ZmaXE ro(s))]— E  [re,(st)].
t—1 St,Q1:t

We first compute the bound of the regret for each round
maxy By, [rar(st)] — Es, a1, [Ta, (5¢)]-

Let us define a* := argmaxy E, [re/(s)] and a}_; :=
arg maxys Eg [Fqr($; 0:—1)]. Then, the regret at round ¢ is

[rat (St)]
[fa* (St; 9&1)] (D

maxE [rq(s;)] — E
a St St,01:t
=E[ra-(s0)] = E

S$1:¢,A1:¢

+ B [Fa(s0)] = E R, (s:00)] @
S1:t,01:¢ S1:¢,A1:¢
+ E {fd:71(5t§9t—1)}— E [fa,(s5650:-1)] (3)
S1:t,01:¢ S$1:t,01:¢

+ E

S1:t,01:¢

[Fa,(56:60:-1)] — E

St,Q1:t

PACHIE )

From Assumption 3, the (T) and (@) terms are caused by an
estimation error and are bounded as follows:
E  [Fay(st;6i—1) — ra,(s¢50¢—1)]

$1:t,01:¢

< E “TAat (St;etfl) — Tay (St;etfl)”

S1:t,Q1:¢

1
= ﬂsl:tﬂj:llht |: (Nat (t — 1) + 1)

and, similarly,

E  [far(st;0:—1) — rax(s¢;0¢—1)]
S1:¢,Q1:¢t

1
(Nax(t—1)+1)

<B E

S1:¢,Q1:¢

the (2) term comes from the failure probability for classifying
the optimal action using 7,(s;). Thus, we can rewrite it as
follows:

E  [far(st;0t-1)] —

S1:t,Q1:t

E [f'a;_l (s¢; 97571)]

$1:t,01:¢
= E [H(a* # G;_1)(Fax (865 01-1) — Tay_, (515 91&71))]
S1:¢,Q1:¢
[[(a* # a;_1)] =P(a* # a;_1).
yQ1:

t

< E
t

1
S1:

The (3) term is bounded by Lemma [3.1]

E[fa,(s6:00-0)] = B [Fa(s63001)]

S1:t,Q1:t S1:t,01:t
<max E [fa(st;60i-1)]— E E [Fa, (8¢5 0¢—1)]

a  s1:¢,a1:¢ ag~TE S1:¢,01:¢—1

< aln(K)

Finally, we have,

max B [rar(se)] = E [ra,(se)]
1
<p S1:tﬂj:¢11;t I: (Na* (t — 1) + 1)

1
+ ﬂSl:tIaEal:t |: (Nat (t — 1) =+ 1)
P(a* # a;_1) + aln(K).

Consequently, for the expected cumulative regret,

1
Ry < E
g st“au (Nar(t—1) + 1)
d 1
+ E
ﬁtzzlsm ay:t (Nat (t — 1) + 1)

T
Z *£ar_,) +aln(K)T.

Theorem 4. Let o = ln‘(j‘iTop) for ag > 0. Then, the expected
cumulative regret of SERN is bounded as

—1

Co 3p+1
Rr Scs/QT 2

0
+C (1 —exp (—cngT‘Qp))_

+Ci (1 — exp (—nglTﬂp))

' a0 In(K)T (In(7%)) "},

where ¢y = exp(—1/ag), Co = Q%K%B, C1 =2BK, Cy =
2(K — 1) exp((B/A2)? — 1/4), dy = 1/(32K?), and dy =
1/(8K?).

Proof of Theorem | From Theorem [3] it is known that
the expected regret is bounded by three terms: estima-
tion error, the failure probability, and regularization. For
1
plores every arms infinitely, estimation errors of all arms
become zero. Now, for any a, we can compute the upper

, since the proposed method ex-



bound by using Theorem [T] and [2] Now, we can bound P (% <p Na(tfl)) using Theorem

1
Sl:tHj:‘llzt i (Na(t — 1) + 1) )
B Ao 2ﬁ
_ ]P’(f <5Na(t71)> =P<Na(t1) < (7) 1)
i, (Na (t - 1) T 1)H (N”( D> )} 2 A
T < oxp [ (et = (28/82)* + 1)
+ E }I(Nat—l 02)] =P 8t
e LV(Na(E - SE e (Ct (28/82 1 (28/82)* — 1)?
< E z]I N(t—1)>c—t> o s ! st
Tspmane | Vot \U° 2 ((25/A2)2 - 1> ( c2t)
T < exp e (%
+ E H(Na(t—l)g%t>]
g\/gﬁ” <Na(t ~1)> ‘it) +P (Na(t ~1)< %) Hence, we get,
2 2E[N.(t—1)] ct
]P)(a* # d:—l)
2 2t ct
<\ar e (we-n<g) 5 rop (121 (1)
23/2 1 2t aa* 4 8
<—— + ex
<oyt (%)

>t
=2(K — 1) exp ((8/A2) — 1/4) ex ( ¢ )
where for the last inequality we use the Markov inequality ( Jexp ((8/82)" — 1/4) exp 8
and the Azuma Hoeffding inequality, respectively. Finally,

we get

Let Co = 25 K28, Cy = 28, Cy = 2(K —1) exp((8/A2)2 —
1/4), di = 1/(32K?), and d> = 1/(8K?). By combining
all bounds, Rt can be bounded as follows:

1
E
S1:t—1,01:¢ |: (Nat (t — 1) + 1)

1
=E E
at | s1:4—1,a1:¢6—1 |: (Nat (t — 1) + 1)
23/2 1 2t 23/2 1 2t 5/2 2
< < <2 l
_EL?,/Q\/-F Xp( 32>]—63/2\/+ XP( 32> S/fz +252exp( %2)
and T 2
t
5 1 +2(K — 1)exp ((8/A2)? — 1/4) Zexp( S )
S1:t—1,01:¢ (Na*(t—1)+1) t=1
+ aln(K)T
1 T
=E E CoK 32 )2 & c*t
at | S1:t—1-01:t—1 |: (Na*(t—1)+1) _WZ%+CI Zexp (7372)
{23/2 1 2t _ 93/2 4 2t t=1 t=1
<E vow (45 )] < e (5. r )
lemv 2)]=amv Z # 0 Senp (55 +am(ir
For the failure probability P(a* # a;_,), let us define t=1
. . . L ,3/2
an estémanon error bO}lnd of Assumption 3 as By, (1) := SCOK3 i /2(1 + VT — 23)
——=———. We obtain the bound as follows: 3/
VNa(t=1)+1 exp (—c°T/32) — 1
oAk . . + C1 5
P(a* #a}_,) =P (ra* (s1) < T&:_l(st)) exp (—c2/32) — 1
exp (—c°T/8) — 1
< a; ) < Fal(st)) + C2W + aln(K)T
COK73/2 Ch Co
< a;* P (Ta* (st) — ﬁNQ*(t—l) <ra(st) + 5Na(t—1)) < 372 VT + 1—exp (—2/32) + 1= exp (—c2/8)
+ aln(K)T.
< Z P (Aa(st) < B, (t—1) + BNa(t—1))
aF#a*
< P (A2 < Bn o (t—1) + - )
- a;* (82 < Bvpu 1) + Bvoo-0) Note that all terms are sub-linear except for aln(K)T. To
make o In(K)T sub-linear, we set o to be ag(In(7?))~!
<

Z P (% < Bn,. (t—l)) +P (% < 5Na(t—1)> . ) ’ exp(—i)

adar with ag > 0. Then, the lower bound ¢ becomes — 2%



and let cq := exp ( L ) Finally,

@

CoK~*/? Ch Co
< vT
Rr < c3/2 + 1 —exp (—c?/32) * 1 —exp(—c?/8)
+aln(K)T
Co ,,3pt1 - -
ST 4 U1 — (T (321)

+Co(1 —exp(=T~*" - 5 /(8K?))) ™"
+ ao In(K)T(In(T?)) "

Co TV 4 C1(1 — exp(—cgdi T~2P)) ™"

Si
37

+Ca(1 — exp(—cgdgT_Qp))_1
+ ao In(K)T(In(T?)) "
O

Theorem 5. For 1/3 > p > 0, if the number of rounds, T,
goes to infinity, then, time-averaged regret converges to zero:
limy oo X2 = 0.

Proof of Theorem 5] To prove that limy_,o 22 = 0, we

show that the upper bound of Rr /T converges to zero, then,
proof will be done since the lower bound of Ry /T is also
ZEero.

Rr <&T3p{ :

T =37

+ Co(1 — exp(—d T 7)) ' 7"
+ In(K)(In(T7)) .

+Ci1(1 — exp(=d T ?P)) 't

Since 1/3 > p > 0, T(3p—1)/2 converges to zero and
In(7P)~! also converges to zero. To show that the second
and third terms converge to zero, we prove that, for a positive
a, lim, o0 (1 — exp(—az=2P)x) "t~ = 0 as follows:

lim (1 —exp(—az~ ")) laz™ -2 ' Ja=1-0=0
Tr—r0o0

where lim,_,q =1 is used. O

_z_
exp(z)—1
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