
Soft Action Particle Deep Reinforcement Learning for a Continuous
Action Space

Minjae Kang∗, Kyungjae Lee∗, and Songhwai Oh

Abstract— Recent advances of actor-critic methods in deep
reinforcement learning have enabled performing several contin-
uous control problems. However, existing actor-critic algorithms
require a large number of parameters to model policy and
value functions where it can lead to overfitting issue and is
difficult to tune hyperparameter. In this paper, we introduce
a new off-policy actor-critic algorithm, which can reduce a
significant number of parameters compared to existing actor-
critic algorithms without any performance loss. The proposed
method replaces the actor network with a set of action particles
that employ few parameters. Then, the policy distribution is
represented using state action value network with action parti-
cles. During the learning phase, to improve the performance of
policy distribution, the location of action particles is updated
to maximize state action values. To enhance the exploration
and stable convergence, we add perturbation to action particles
during training. In the experiment, we validate the proposed
method in MuJoCo environments and empirically show that
our method shows similar or better performance than the
state-of-the-art actor-critic method with a smaller number of
parameters.

I. INTRODUCTION

Model-free reinforcement learning (RL) with a deep neural
network has shown successes to learn complex continuous
controllers in many control problems, such as locomotion
tasks [1], complex manipulation tasks [2], and autonomous
vehicle control [3]. The goal of reinforcement learning is to
find a controller, also known as a policy, that best performs a
given task. In a general RL problem, since the environment
is assumed to be unknown, a robot searches the environment
to verify which state and action lead to high performance
for a given task through trial and error while maximizing
the cumulative rewards at the same time.

Recently, an actor-critic method has been widely used
by a neural network that can efficiently learn the policy
and value function. In [4], a policy and state action value
function (or Q function) is modeled by a neural network
where the policy network is updated by the deterministic
policy gradient theorem [5] and the value network is updated
using the Bellman optimality equation. Moreover, to improve
exploration efficiency in continuous action spaces, various
methods often utilize entropy maximization [6], [7] for a
policy function. In [6], [7], a soft actor-critic method has

*: Equal contribution. M. Kang, K. Lee, and S. Oh are with the
Department of Electrical and Computer Engineering and ASRI, Seoul Na-
tional University, Seoul 151-744, Korea (e-mail: {minjae.kang, kyungjae.lee,
songhwai.oh}@rllab.snu.ac.kr). This work was supported in part by Institute
of Information & Communications Technology Planning & Evaluation
(IITP) grant funded by the Korea government (MSIT) (No. 2019-0-01190,
(SW Star Lab) Robot Learning: Efficient, Safe, and Socially-Acceptable
Machine Learning, and No. 2019-0-01371, Development of Brain-Inspired
AI with Human-Like Intelligence).

been proposed which is an actor-critic method to maximize
both cumulative rewards and entropy of policy.

There is a drawback of actor-critic methods that require a
large number of parameters to model neural networks. First,
when computing resources are limited, it is difficult to train
a large number of parameters. Accordingly, existing actor-
critic algorithms are not suitable for directly learning on a
device with small computation capacity such as an embedded
computing device. Also, to train many parameters, many
hyperparameters should be carefully designed. Furthermore,
it is sometimes harmful since a function approximation with
large parameters can be easily overfitted where overfitted
value and policy functions show poor generalization perfor-
mance. Thus, the reduction of the number of parameters may
improve the generalization performance. Finally, it leads to
stable convergence of a policy network and allows us to apply
an actor critic method that can tune hyperparameters easily.

In this paper, we propose a new actor-critic method, called
a soft action particle (SAP) method, to solve these problems.
Unlike other actor-critic algorithms, we reduced the number
of parameters by replacing the policy network with action
particles created by discretization of the action space. We
need to train each action particle as a better particle that
is expected to give a higher Q value because we would
like to use them to represent the entire action space with
only a small number of actions. This method successfully
replaces actor networks with a significantly a smaller num-
ber of parameters. To measure the performance of SAP,
experiments were implemented in MuJoCo simulators. We
show the results in Swimmer and HalfCheetah environments.
In conclusion, our proposed algorithm has similar or better
performance than the state of the art with fewer parameters
than other actor-critic algorithms.

II. RELATED WORK

The actor-critic algorithm has been widely studied in rein-
forcement learning for a continuous action space. The actor-
critic algorithm can be categorized by two main streams:
on-policy methods and off-policy methods.

For off-policy methods, deep deterministic policy gradient
(DDPG) [4] consists of a deterministic policy network and
a Q-network that predicts state-action values. Each network
interacts with each other and is trained to obtain higher and
more accurate Q values. However, there is a drawback that
it does not perform well for complex problems. On the con-
trary, a soft actor-critic (SAC) [7] method trains a stochastic
actor by maximizing both the entropy of policy and the sum
of discounted rewards. Since the maximum entropy leads the

effective exploration, SAC can achieve stable performance.
Twin delayed deep deterministic (TD3) [8] also improves the
performance by reducing the overestimation error that is a
typical problem of Q-learning. In TD3, clipped double Q-
learning method and delayed update of the policy prevent
overly optimistic prediction. However, off-policy algorithms
use a significant number of parameters because they require
various networks for learning.

For on-policy methods, there are various algorithms such
as trust region policy optimization (TRPO) [9] and prox-
imal policy optimization (PPO) [10]. TRPO improves the
performance of policy slowly by applying the KL-divergence
constraint between the old policy and the new policy to pre-
vent a collapse of the policy caused by rapid policy update.
PPO suggests a policy training method using only first-order
optimization while it keeps the numerical stability of TRPO.
PPO penalizes drastic policy change by just clipping the
surrogate objective that is the target of maximizing in TRPO.
However, these algorithms cannot reuse the past samples
gained before. Therefore, whenever a policy is updated, a
new sequence of data must be obtained for further training.

Our SAP algorithm is a Q-learning and on-policy method
that alters an actor of prior actor-critic algorithms to a set
of action particles. By calculating the direction of gradients
based on action-state value, action particles are trained
to get the higher Q-value. The SAP method shows good
performance with fewer amounts of parameters than other
actor-critic algorithms. We show the performance of the SAP
algorithm compared to another off-policy algorithm DDPG,
SAC, and TD3, and on-policy algorithm TRPO and PPO in
the MuJoCo environments.

III. BACKGROUND

In this section, we introduce Markov decision processes
which are used as a mathematical framework to formulate a
reinforcement learning and entropy regularization of policy
distribution. Furthermore, the soft actor-critic method [7] is
also reviewed which is the state of the art actor-critic method
with the maximum entropy.

An MDP is generally defined as a tuple M =
{S,A, d, T, γ, r}, where S and A indicate a state and action
spaces, respectively, d(s) is an initial distribution, T (s′|s, a)
is a condition probability, or the transition probability from
s ∈ S to s′ ∈ S by taking a ∈ A, γ ∈ (0, 1) is
a discount factor, and r is the reward function. The ob-
jective of an MDP is to find a policy which maximize
E [

∑∞
t=0 γ

tr(st, at)|π, d, T], where policy π is a mapping
from the state space to the action space. For notational
simplicity, we denote the expectation of a discounted sum-
mation of function f(s, a), i.e., E[

∑∞
t=0 γ

tf(st, at)|π, d, T],
by Eπ[f(s, a)], where f(s, a) is a function of state and
action, such as a reward function r(s, a) or an indicator
function 1{s=s′,a=a′}. We also denote the expectation of
a discounted summation of function f(s, a) conditioned on
the initial state, i.e., E[

∑∞
t=0 γ

tf(st, at)|π, s0 = s, T], by
Eπ[f(s, a)|s0 = s].

Recently, an MDP is extended to the soft MDP by com-
bining maximum cumulative rewards with maximum entropy
objective. It leads to efficient exploration and enables to
learn multiple optimal actions since the maximum entropy
penalizes the deterministic policy.

A. Soft Markov Decision Processes

In order to obtain a multi-modal policy function and
improve sample efficiency, an entropy-regularized MDP, also
known as a soft MDP, has been widely used [11]–[14]. A
soft MDP is defined as follows:

maximize
π

Eπ [r(s, a)] + αH(π)

subject to ∀ s
∑
a′

π(a′|s) = 1, ∀ s, a π(a′|s) ≥ 0,
(1)

where H(π) indicates Shannon-Gibbs entropy regularization,
i.e., Eπ [− log(π(at|st))], which is an extension of a general
SG entropy to sequential random variables, such as sequence
of state and actions, and α is a coefficient. The soft MDP
problem (1) has been extensively studied in [6], [12], [13].
In [12], Bloema et al. have derived a soft Bellman equation
and the optimal policy distribution from the Karush Kuhn
Tucker (KKT) conditions as follows:

Qsoftπ (s, a) = r(s, a) + γ
∑
s′

V softπ (s′)T (s′|s, a)

V softπ (s) = α log

(∑
a′

exp

(
Qsoftπ (s, a′)

α

))

π(a|s) =
exp

(
Qsoftπ (s,a)

α

)
∑
a′ exp

(
Q
soft
π (s,a′)

α

) ,
V softπ (s) is a state value function of π including the entropy
of a policy, obtained by starting at state s and Qsoftπ (s, a) is
a state-action value function of π with the entropy maximiza-
tion, which is obtained by starting at state s by taking action
a. Note that the optimal policy is a softmax distribution of
the state action value function of the soft MDP.

The causal entropy regularization has an effect of making
the resulting policy of a soft MDP closer to a uniform
distribution as the number of actions increases.

B. Soft Actor Critic Method

In [7], Haarnoja et al. proposed a soft actor critic (SAC)
method which can find the optimal policy of the soft MDP.
SAC consists of two steps: soft policy evaluation and soft
policy improvement. The SAC maintains five networks:
policy network πφ, two state action value networks Qθi
for i = 1, 2, state value network Vψ and target state value
network Vψ− . In soft policy evaluation step, value networks
are updated. For Qθ network, the following loss is used

Lθ = E(st,at)∼M

[
1

2
(Qθ(st, at)

− (r(st, at) + γEst+1∼ps [Vψ̄(st+1)]))
2

] (2)

which is derived from the soft Bellman equation. The loss
function for Vψ is used as follows:

Lψ = Est∼M
[
1

2
(Vψ(st)

− Eat∼πφ [Qθ(st, at)− log πφ(at|st)])2
]
,

(3)

which is also derived by the relationship between Q and V .
In soft policy improvement step, policy function is updated
to maximizes the value function which is computed at soft
policy evaluation. Since the optimality condition of a soft
MDP is that the policy distribution are exponentially propor-
tional to the state action value, policy function is updated to
minimize Kullback-Leibler (KL) divergence between policy
distribution and softmax distribution of state action value
defined as follows:

Lφ = Est∼M
[
DKL

(
πφ(·|st)

∣∣∣∣∣∣∣∣exp(Qθ(st, ·))Zθ(st)

)]
. (4)

In [7], it was shown that iteratively update policy and value
functions converges to the optimal policy of soft MDP. Fur-
thermore, it shows the state-of-the-art performance compared
to prior on-policy and off-policy methods, experimentally.

Since SAC requires five neural networks, optimizing hy-
perparameters to obtain the best performance requires de-
manding validation tasks. To handle this issue, the proposed
method reduces the number of function approximations in
the actor-critic method by replacing the policy network with
action particles.

IV. PROPOSED METHOD

We propose an action particle method by discretizing the
continuous action space into a set of finite actions. The action
space is partitioned by NA number of Gaussian distributions
with mean and standard deviation parameters as follows:

M = {µi}NAi=1, S = {σi}NAi=1,

where M is a set of means of actions, S is a set of standard
deviations. In training step, the agent always samples new
action particles as follows:

ai = µi + εiσi, εi ∼ N (0, 1),

where ai ∈ A is the ith action particle generated by Gaussian
distribution. Sampling action set encourages exploration.

Based on NA actions, a policy distribution is defined by
a softmax distribution over NA actions, which assigns the
probability exponentially proportional to Qθ(s, a) as follows,

πθ(ai|s) ,
Eεi [exp (Qθ(s, ai)/α)]∑

mj∈M,σj∈S Eεj [exp (Qθ(s, aj)/α)]
, (5)

where εi is a Gaussian noise for the ith Gaussian distribution,
and α is an entropy regularization coefficient. The meaning
of the expectation over εi is that we consider all possible
actions, which can be sampled from the ith Gaussian distri-
bution. However, in the implementation, the expectation will
be approximated by a Monte Carlo sampling method.

A. Soft Q Learning with Action Particles

We update the Q function based on the soft Bellman opti-
mality equation. While the integral over action space is often
intractable, we approximate it using the summation over
the action particles. This approximation can be viewed as
Monte-Carlo integration. The target value of the Q function
is computed as follows:

yt = rt + γα log

(∫
A
exp

(
Qθ−(st+1, a)

α

)
da

)

≈ rt + γα log

∑
µj ,σj

E
εj

[
exp

(
Qθ−(st+1, aj)

α

)] ,

where θ− indicates the parameter of a target network. Since
the expectation with respect to ε is often intractable, we
approximate it using a Monte Carlo sampling method in its
implementation where one sample estimation is enough to
make the state action value network converge stably.

Then, the Q function can be trained by minimizing the
following loss: L = 1

B

∑B
t=0 (yt −Qθ(st, at))

2, where θ is
the parameter of a prediction network and B is the number
of state, action and target pairs. Similarly to other deep
reinforcement learning algorithms, we utilizes two networks
with parameters θ− and θ. θ− is used to estimate yt and is
updated slowly by mixing θ with a ratio τ .

B. Action Particle Update

The performance of the implicit policy πθ with action
particles can be improved by updating Q function towards the
optimal action value using the soft Bellman equation. How-
ever, it has the limitation in that the fixed particles possibly
cannot represent the optimal policy since the optimal actions
may not be included in the fixed M . Therefore, we need to
move the mean and standard deviation of action particles
towards the maximum action value based on a Q function.

Before discussing how to update the particles, we would
like to restate the objective function of soft RL. The expected
sum of rewards with entropy can be represented as the
expectation of the value function with respect to an initial
state as follows: Eπ [r(st, at)]+αH(π) = Es0∼d(s) [Vπ(s0)].
Then, we follow the prior work of an off-policy actor-critic
method [15]. We want to change the initial state distribution
from d(s) to ρβ(s) which is a stationary distribution over
the state space when following an arbitrary behavior policy
β. The optimal solution with the changed initial distribution
is the same as that of the original problem since the soft
Bellman optimality equation does not include the initial state
distribution. In other words, since the Bellman optimality
equation induced by Es0∼d(s) [Vπ(s0)] is exactly equivalent
to the optimality with Es0∼ρβ(s) [Vπ(s0)], the optimal solu-
tion is not changed. Now, we can freely utilize the off-policy
manner by setting ρβ to be the replay buffer D.

Hence, we aim to update the action particles A to maxi-
mize Es0∼D [Vπ(s0)]. Similarly to other Q learning methods,
we approximate the state value Vπ using the Qθ function as

follows:
Vπ(s) ≈ Ea∼πθ,{ε} [Qθ(s, a)− α log(πθ(a|s))]

= Ea∼πθ

α log

∑
aj∈A

Eµj ,σj
[
exp

(
Qθ(s, aj)

α

)]
= α log

∑
µj ,σj

Eεj
[
exp

(
Qθ(s, aj)

α

)] ,

(6)

where πθ is replaced with the equation (5). The gradient
of the expected return with D gives proper directions of
updating the means and standard deviations, which can be
computed as follows:
∇µiEs∼D [Vπ(s)]

= Es∼D

∇µiα log

∑
µj ,σj

Eεj
[
exp

(
Qθ(s, aj)

α

)]
= Es∼D

[
Eεi [exp (Q(s, ai)/α)∇aQθ(s, a)|a=ai]∑

µj ,σj
Eεj [exp (Q(s, aj)/α)]

]
,

(7)

and
∇σiEs∼D [Vπ(s)]

= Es∼D

∇σiα log

∑
µj ,σj

Eεj
[
exp

(
Qθ(s, aj)

α

)]
= Es∼D

[
Eεi [exp (Q(s, ai)/α)∇aQθ(s, a)|a=aiεi]∑

µj ,σj
Eεj [exp (Q(s, aj)/α)]

]
,

(8)

where ∇µi is a gradient with respect to the ith mean, ∇σi is
a gradient with respect to the ith standard deviation, ai is an
action particle that equal to µi+εiσi, and D is a replay buffer.
From the equation (7), the moving direction of means is the
weighted sum of gradient of the estimated action value. It can
be observed that ∇aQθ(s, a)|a=ai indicates the direction of
maximizing the expected return and the exp (Q(s, ai)/α) /Z
plays a role of an importance weight of action a at state s
where Z is E{ε}

[∑
aj∈A exp (Q(s, aj)/α)

]
. In other words,

If exp (Q(s, ai)/α) has high probability, then, it means ai is
a crucial action for state s. The weight makes ai to maximize
Qθ(s, a) by amplifying the gradient of Qθ(s, a). Since
the expectation with respect to ε is intractable in practice,
we approximate the gradients using Monte Carlo sampling
method in the implementation and verify that one sample
approximation is sufficient to train the action particles.

C. Bounded Action Space
In many robotics problems, the action range of an agent

is limited by several conditions. We assume that the given
action spaces are bounded by la in all dimensions where,
for all a ∈ A, |a|max ≤ la holds where | · |max indicates an
infinite norm.

During the update of action particles, some particles could
violate the bounds of the action space. In that case, it is
required to adjust the scale of the violated action values. To
maintain the proportion of action particle, the mean vector is
divided by a particular value. In brief, if the mean particle µi
exceeds a boundary value la, µi is replaced with the projected
mean µ+

i defined as µ+
i = µi

|µi|max
la.

(a) Average Distance of Mean Pairs (b) Percentage of Close Mean Pairs

Fig. 1: This graph shows results of the convergence of action
means depending on resampling. (a) The change of average distance
between all mean pairs when we use resampling or not. (b) The
percentage of mean pairs which is closer than certain distance when
we use resampling or not.

D. Resampling
While updating particle with the weighted gradient can

improve the performance of πθ, it may cause that several
particles converge into the same point. This phenomenon can
hamper the exploration of the proposed method and causes
memory inefficiency.

The red line in Figure 1 shows this problem clearly. As the
training of particles progressed, the average distance between
mean pairs becomes smaller and the ratio of pairs who closer
than particular distance increases. In this regards, to spread
the convergent particles, a simple resampling technique is
used. We calculate the Euclidean distance between two mean
particles and check the following inequality:

||µi − µj ||2 < dmin (9)

where dmin is the predefined minimum distance. If the
inequality (9) is satisfied, we delete aj and a new action
is sampled from uniform distribution in the action space,
µ ∼ Uniform (A). The blue line in Figure 1 shows the result
of applying the resampling rule. It means that resampling
step solves the convergence problem properly.

V. EXPERIMENTS

A. Ablation Study
In this experiment, we conduct several ablation studies

to verify the influence of each method to update action
particles. We analyze three techniques: updating particles
with a naive gradient Es∼B [∇aQθ(s, a)], updating particles
with a weighted gradient Es∼B [πθ(a|s)∇aQθ(s, a)], a re-
sampling method. We compare the following methods which
are the combinations of three techniques on HalfCheetah
environment.

1) Fixed Particles: This method is the baseline which
initially samples actions from the uniform distribution over
the action space and fixes the sampled particles. Only Qθ is
updated.

2) Gradient Update (Grad): This method updates
both Q network and particles with a naive gradient
Es∼B [∇aQθ(s, a)].

3) Gradient Update with Resampling (Grad+Res): This
method updates both Q network and particles with a naive
gradient Es∼B [∇aQθ(s, a)] and resamples the particles by
checking the condition (9).

Algorithm 1 Soft Action Particle
Input: Environment env, action space A, the minimum distance dmin, the number of action particles NA, update ratio τ

1: Initialize mean particles M = {µi} uniformly sampled from A, standard deviation of particles S = {σi} uniformly sampled from
(0, σmax)

D , replay memory D = ∅, Q network parameters θ and θ−

2: for i = 0 to N do
3: Sample initial state s0 ∼ d0(s)
4: for t = 0 to T do
5: Generate action set A = {ai} using µ and σ particles
6: Sample action at ∼ πθ(a|st) (5)
7: Execute at and observe st+1 and rt from env
8: Add experiences to replay memory, D ← (st, at, rt, st+1) ∪ D
9: Sample mini-batch B from D

10: Set a target value yj of (sj , aj , rj , sj+1) in B, yj = rj + γα log
(∑

ai∈A exp
(
Q
θ− (sj+1,ai)

α

))
11: Minimize

∑
j (yj −Qθ(sj , aj))

2

12: Update θ− ← (1− τ)θ− + τθ
13: if Every c steps then
14: Update mean and standard deviation particles {µj} and {σj} with (7) and (8)
15: for Every µj and µk pairs in M do
16: if |µj − µk|2 < dmin then M ← (M − {µk}) ∪ {µnew} where µnew ∼ Uniform (A)

4) Soft Action Particle (SAP): The Soft Action Parti-
cle (SAP) method is the proposed method which updates
both Q network and particles with a weighted gradient
Es∼B [πθ(a|s)∇aQθ(s, a)] and resamples the particles by
checking the condition (9).

The above methods use the identical architecture for Q
network and all hyperparameter settings are the same. 128
action particles are used, i.e., NA = 128 and particles
are trained every 100 steps. The minimum distance that
is the threshold of resampling is 0.3, and the update ratio
of parameters τ is 0.001. We run all algorithms with five
different random seeds and measure the average returns
during training phase.

The results are shown in Figure 2. By comparing the
results of Fixed Particles and Grad, updating particles with
a naive gradient leads to a catastrophic failure. This result is
mainly caused by the convergence of particles where most
particles are concentrated into the same vector. This problem
can be alleviated by the resampling method. Grad+Res
method shows a reasonable performance similar to the Fixed
Particles but still worse. The gradient ∇aQθ(s, a) provides
the direction to maximizes the average returns at given
state s. However, the expected gradient over states smooths
each ∇aQθ(s, a). In other words, if two different state
s and s′ generate the conflict gradient directions, then,
Es∼B [∇aQθ(s, a)] gives not suitable direction and it may
causes performance drop as shown in Figure 2.

To handle this issue, the weighted gradient derived from
(7), i.e., π(a|s)∇aQθ(s, a) is applied. π(a|s) can be inter-
preted as the level of importance a at state s. The high
probability of π(a|s) means that Qθ(s, a) is higher than
other actions. To this end, weighted gradient with resampling
which is the proposed method outperforms other compared
methods.

B. Continuous Control Problems

In this experiment, we compare the proposed method to
DDPG, SAC, TD3, TRPO and PPO with the generalized

Fig. 2: Average returns from five different random seeds in
HalfCheetah. Shaded regions indicate the standard deviation.

advantage estimation (GAE). Both actor and value networks
of TRPO and PPO are implemented with two hidden layers
each of that is size 64. Also, all actors, critics, and value
networks used in DDPG, TD3, and SAC are composed of
two hidden layers, 400, 300 in order. On the other hand, the
critic network of SAP is implemented in three layers with
sizes of 400, 300, and 300 in order.

In Figure 3(a) and (b), the SAP method with different
number of particles NA is tested on the Swimmer and
HalfCheetah. We would like to note that the coefficient of
entropy of each method is found by a brute force search. The
best coefficients for each number of particles are reported
in the legend of Figure ??(a). As we expect, when more
particles are used, SAP achieves better performance. In
detail, Swimmer is an environment that has two dimensional
actions, so the performance with only 16 action particles is
not significantly poor compared to the performance with 64
or 128 particles. Rather fewer actions lead to faster learning
speed because exploration is successfully carried out to entire
action set. But stability is lower than more particle cases.
On the other hand, in HalfCheetah which has more complex
actions, the performance with 64 or 128 particles is much
better than 16 particles. This means that 16 actions are not
sufficient to cover the entire action space. These results prove
efficiency of SAP compare to other discretization algorithms
like DQN which requires thousands of actions but hold a

(a) SAP results on Swimmer-v2 with
the different number of Particles

(b) SAP results on HalfCheetah-v2
with the different number of Particles

(c) Results on Swimmer-v2 with var-
ious algorithms

(d) Results on HalfCheetah-v2 with
various algorithms

Fig. 3: Experimental results on the Swimmer and HalfCheetah problems. (a, b) Average returns of SAP with the different number of action
particles 16, 64, and 128. α is the best regularization coefficient in each case. (c, d) Average returns of various actor-critic algorithms.
We compared SAP with on-policy methods such as TRPO and PPO, and off-policy methods DDPG, TD3, and SAC. All graphs indicate
the average of 10 episodes at every 5000 steps with five different random seeds.

poor performance.
Table I shows how many parameters each algorithm re-

quires in the HalfCheetah environment. In the case of SAP,
128 action particles are used as a reference. On the other
hand, TRPO and PPO use a large network and a small
network for performance experiments and the result of a
small network is better for all environments. However, even
better performance is much lower than SAP, so it is not
meaningful to compare the number of parameters. Therefore,
only the actor-critic algorithms are described in the Table I.

Figure 3(c) and (d) shows that SAP performs the highest
performance with least deviation in Swimmer and indicates
the similar performance to state-of-the-art in HalfCheetah
using the least number of particles. In the case of HalfChee-
tah, it can be seen from Table I that the SAP method uses
only 42.7% of total parameters compared to SAC, which is
the best performing algorithm. It means action particles that
consist of very few parameters can replace the actor that is
made up of tens of thousands of parameters in other actor-
critic methods.

VI. CONCLUSION

In this paper, we have proposed a new actor-critic method,
SAP. The main idea of SAP is to replace an actor of existing
actor-critic algorithms with a set of action particles. This
means that SAP solves robotics problems with a random
discretization of action space. Action particles are made by
means set and standard deviations set, and these two sets
are subject to training. The convergence problem that occurs
when we train particles is resolved by resampling technique.
Also, we increase the performance of SAP by changing the
gradients applied to each particle from a simple sum to
a weighted sum. Ablation experiments in the HalfCheetah
problem have clearly demonstrated its effectiveness. In the
experiments, we confirmed that the performance of SAP is
higher than or similar to the existing actor-critic algorithms.
In other words, by successfully training the action particles,
we can effectively replace the actor of existing methods with
very few parameters.

REFERENCES

[1] X. B. Peng, G. Berseth, K. Yin, and M. van de Panne, “Deeploco:
dynamic locomotion skills using hierarchical deep reinforcement

Algorithm π Q V total
SAP 1536 220201 - 221737

DDPG [4] 129306 130201 - 259507
TD3 [8] 129306 260402 - 389708
SAC [7] 131112 260402 127801 519315

TABLE I: The number of parameters used in HalfCheetah

learning,” ACM Transactions on Graphics, TOG, vol. 36, no. 4, p. 41,
2017.

[2] S. Levine, N. Wagener, and P. Abbeel, “Learning contact-rich ma-
nipulation skills with guided policy search,” in IEEE International
Conference on Robotics and Automation, ICRA, May 2015, pp. 156–
163.

[3] Y. Zhu, R. Mottaghi, E. Kolve, J. J. Lim, A. Gupta, L. Fei-Fei, and
A. Farhadi, “Target-driven visual navigation in indoor scenes using
deep reinforcement learning,” in IEEE International Conference on
Robotics and Automation, ICRA, May 2017, pp. 3357–3364.

[4] T. P. Lillicrap, J. J. Hunt, A. Pritzel, N. Heess, T. Erez, Y. Tassa,
D. Silver, and D. Wierstra, “Continuous control with deep reinforce-
ment learning,” arXiv preprint arXiv:1509.02971, 2015.

[5] D. Silver, G. Lever, N. Heess, T. Degris, D. Wierstra, and M. A.
Riedmiller, “Deterministic policy gradient algorithms,” in Proceedings
of the 31th International Conference on Machine Learning, ICML, Jun
2014, pp. 387–395.

[6] T. Haarnoja, H. Tang, P. Abbeel, and S. Levine, “Reinforcement learn-
ing with deep energy-based policies,” in Proc. of the 34th International
Conference on Machine Learning, Aug 2017, pp. 1352–1361.

[7] T. Haarnoja, A. Zhou, P. Abbeel, and S. Levine, “Soft actor-critic:
Off-policy maximum entropy deep reinforcement learning with a
stochastic actor,” in Proceedings of the 35th International Conference
on Machine Learning, ICML, Jul 2018, pp. 1856–1865.

[8] S. Fujimoto, H. van Hoof, and D. Meger, “Addressing function
approximation error in actor-critic methods,” in Proceedings of the
35th International Conference on Machine Learning, ICML, Jul 2018,
pp. 1582–1591.

[9] J. Schulman, S. Levine, P. Abbeel, M. I. Jordan, and P. Moritz, “Trust
region policy optimization,” in Proceedings of the 32th International
Conference on Machine Learning, ICML, Jul 2015, pp. 1889–1897.

[10] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov,
“Proximal policy optimization algorithms,” CoRR, 2017.

[11] M. Tokic and G. Palm, “Value-difference based exploration: adaptive
control between epsilon-greedy and softmax,” in Annual Conference
on Artificial Intelligence, Oct 2011, pp. 335–346.

[12] M. Bloem and N. Bambos, “Infinite time horizon maximum causal en-
tropy inverse reinforcement learning,” in Proc. of the IEEE Conference
on Decision and Control, Dec 2014, pp. 4911–4916.

[13] J. Schulman, P. Abbeel, and X. Chen, “Equivalence between policy
gradients and soft q-learning,” arXiv preprint arXiv:1704.06440, 2017.

[14] P. Vamplew, R. Dazeley, and C. Foale, “Softmax exploration strategies
for multiobjective reinforcement learning,” Neurocomputing, vol. 263,
pp. 74–86, Jun 2017.

[15] T. Degris, M. White, and R. S. Sutton, “Linear off-policy actor-critic,”
in Proceedings of the 29th International Conference on Machine
Learning, ICML, 2012.

