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I. PROOF OF THEOREM 1
Lemma 1 (Lemma 5.1 in [1]): For δ ∈ (0, 1), if βk =

2 log(|Q|πk/δ), where
∑
π−1
k = 1 and πk = π2k2/6,

|P(q)− µk−1(q)| ≤ β1/2
k σk−1(q)

∀q ∈ Q, with probability 1− δ.
Lemma 2: If |P(q)− µk−1(q)| ≤ β1/2

k σk−1(q) ∀q ∈ Q,

rk ≤
Tk∑
t=1

2β
1/2
k σk−1(ξk(t)),

where Tk = |ξk|.
Proof: For ξk chosen at the kth round, the GP-UCB

algorithm is applied such that:

ξk = arg max
ξ∈Ξ

|ξ|∑
t=1

(
µk−1(ξ(t)) + β

1
2

k σk−1(ξ(t))
)
.

Therefore, it is clear that
Tk∑
t=1

(
µk−1(ξk(t)) + β

1/2
k σk−1(ξk(t))

)
≥

T∗∑
t=1

(
µk−1(ξ∗(t)) + β

1/2
k σk−1(ξ∗(t))

)
≥ f(ξ∗)

Hence, we have

rk = f(ξ∗)− f(ξk)

≤
Tk∑
t=1

(
µk−1(ξk(t)) + β

1/2
t σk−1(ξk(t))

)
− f(ξk)

≤
Tk∑
t=1

(
µk−1(ξk(t))− P(ξk(t))

)
+ β

1/2
t σk−1(ξk(t))

≤
Tk∑
t=1

2β
1/2
k σk−1(ξk(t))

Let Ξk ∈ Ξ be a set of all k-combinations in Ξ. For
A ∈ Ξk, we define q(A) = ∪ξ∈A ∪|ξ|t=1 ξ(t), the set of all
states of all paths in A.
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Lemma 3: For δ ∈ (0, 1) and βk defined as in Lemma 1,
with probability at least 1− δ,

K∑
k=1

r2
k ≤ C1βKγK (1)

where C1 = 8Tmax/ log(1 + σ−2
ε ) and γK =

maxA∈ΞK
I(pq(A);Pq(A)) is the maximum information gain

after K rounds. Here, Pq(A) and pq(A) are sets of comfort
scores and corresponding observations at states in A, respec-
tively.

Proof: From Lemma 2, we have

r2
k ≤

(
Tk∑
t=1

2β
1/2
k σk−1(ξk(t))

)2

≤ 4βK

(
Tk∑
t=1

σk−1(ξk(t))

)2

≤ 4βKTk

Tk∑
t=1

σ2
k−1(ξk(t))

since βk is nondecreasing. The last inequality is due to the
Cauchy-Schwarz inequality. By defining C2 = σ−2

ε / log(1+
σ−2
ε ) ≥ 1 as done in [1], we have

r2
k ≤ 4βKTkσ

2
ε

Tk∑
t=1

σ−2
ε σ2

k−1(ξk(t))

≤ 4βKTkσ
2
ε

(
Tk∑
t=1

C2 log(1 + σ−2
ε σ2

k−1(ξk(t)))

)

= 8σ2
εC2TkβK

(
1

2

Tk∑
t=1

log(1 + σ−2
ε σ2

k−1(ξk(t)))

)
Using Lemma 5.3 in [1], for Ak ∈ Ξk, we have

I(pq(Ak);Pq(Ak)) =
∑
ξ∈Ak

1

2

|ξ|∑
t=1

log(1 + σ−2
ε σ2

k−1(ξ(t)))


Noting that |Ak| = k, we arrive at

K∑
k=1

r2
k ≤ 8σ2

εC2TmaxβKI
(
pq(AK);Pq(AK)

)
≤ C1βKγK

Lastly, C1 can be simplified to C1 = 8Tmax/ log(1 + σ−2
ε )

Since R2
K ≤ K

∑K
k=1 r

2
k using the Cauchy-Schwarz

inequality, Theorem 1 has been proven.
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