430.714

Estimation Theory

Prof. Songhwai Oh
ECE, SNU
INTRODUCTION
Estimation Problems

- Global positioning system (GPS)
- Signal processing – radar, sonar, speech, ...
- Image analysis – lane detection, OCR, ...
- Biomedicine – ultrasound, CT scan, MRI, ...
- Communication – wireless phones, radio, ...
- Control and robotics
- Seismology
- ...

Prof. Songhwai Oh

Estimation Theory
Example: Acoustic Amplitude Sensor

- **Assumptions:**
 - point source
 - lossless, isotropic propagation

\[z(x) = \frac{a}{\| x_{\text{source}} - x \|} + w \]

- **\(z(x) \):** root-mean-squared (rms) amplitude measurement at \(x \)
- **\(a \):** amplitude at the sound source
- **\(x_{\text{source}} \):** sound source position
- **\(x \):** sensor position
- **\(\sim \):** attenuation coefficient (acoustic: \(\sim 2 \))
- **\(w \):** measurement noise (variance \(\sim 5 \))
Example: Direction-Of-Arrival (DOA) Sensor

• Beamforming: M identical omnidirectional microphones

\[g_m(t) = s_0(t - t_m) + w_m(t) \]

 - \(g_m \): received signal at m-th microphone
 - \(s_0 \): source signal
 - \(w_m \): noise
 - \(t_m \): time delay

• If the source is far away, it can be considered as planar wave.

 \[t_m = \frac{d}{c} \sin \theta \]

 - \(c \): speed of sound

Prof. Songhwai Oh

Estimation Theory
Questions

Given a problem
• What is a good representation of data?
• What is a good mathematical model?
• How to design a good estimator?
• How to measure performance of an estimator?
Assessing Estimator Performance

Model: \(x[n] = A + w[n] \)

- zero mean white noise process (variance = \(~^5\))
- unknown parameter

Goal: From \(\{x[0], x[1], \ldots, x[N - 1]\} \), estimate \(A \).

Estimator 1: \(\hat{A}_1 = \frac{1}{N} \sum_{n=0}^{N-1} x[n] \)

\[\text{var}(\hat{A}_1) = \text{var} \left(\frac{1}{N} \sum_{n=0}^{N-1} x[n] \right) = \frac{1}{N^2} \sum_{n=0}^{N-1} \text{var}(x[n]) = \frac{\sigma^2}{N} \]

\[\mathbb{E}(\hat{A}_1) = A \]

Estimator 2: \(\hat{A}_2 = x[0] \)

\[\text{var}(\hat{A}_2) = \text{var}(x[0]) = \sigma^2 > \text{var}(\hat{A}_1) \]
COURSE OUTLINE
Course Information

- Instructor: Songhwai Oh (songhwai@snu.ac.kr)
- TA: Timothy Ha (timothy.ha@rllab.snu.ac.kr)

- Textbooks (Recommended)

- Homepage:

- Class Board:
 - eTL
Topics

• Introduction and review of probability theory and linear algebra
• Minimum variance unbiased estimators
• Cramer-Rao bound
• Linear models and sufficient statistics
• Best linear unbiased estimators and maximum likelihood estimators
• Least squares, exponential family, and Bayesian approaches
• Multivariate Gaussian distribution
• Bayes risk, minimum mean square error (MMSE), and maximum a posteriori (MAP)
• Linear MMSE and sequential linear MMSE
• Bayesian filtering
• Kalman filtering
• Advanced topics in Kalman filtering
• Extended Kalman filter, unscented Kalman filter, and particle filter
• *Data association and multi-target tracking
• *Gaussian process regression (*if time permits)
Grading

• Class participation (online)
 – Recorded lectures in eTL
 – Q&A Session: Wed. 2:45-3:15 PM (Zoom)

• Homework (eTL)

• Midterm (in class)

• Final exam (in class)